Dorsoventral (adaxial/abaxial) polarity of the maize leaf is established in the meristem and is maintained throughout organ development to coordinate proper outgrowth and patterning of the leaf. rolled leaf1(rld1) and leafbladeless1 (lbl1) are required for the specification of the adaxial/upper leaf surface. rld1 encodes a class III homeodomain-leucine zipper (HD-ZIPIII) protein whose adaxial expression is spatially defined by miRNA166-directed transcript cleavage on the abaxial side. The semi-dominant Rld1-Original (Rld1-O)mutation, which results from a single nucleotide substitution in the miRNA166 complementary site, leads to persistent expression of mutant transcripts on the abaxial site. This causes the adaxialization or partial reversal of leaf polarity. By contrast, recessive mutations in lbl1 cause the formation of abaxialized leaves. The lbl1 and Rld1-Omutations mutually suppress each other, indicating that these two genes act in the same genetic pathway. Adaxial and meristematic expression of rld1is reduced in lbl1 mutants, indicating that lbl1 acts upstream of rld1 to specify adaxial fate during primordium development. However, rld1 expression in the vasculature of lbl1 is normal, suggesting that the specification of adaxial/abaxial polarity during vascular and primordia development is governed by separate but overlapping pathways. We also show that members of the maize yabbygene family are expressed on the adaxial side of incipient and developing leaf primordia. This expression pattern is unlike that observed in Arabidopsis, where YABBY expression is correlated with abaxial cell fate. The yabby expression patterns in lbl1 and Rld1-O mutants suggest that the yabby genes act downstream in the same pathway as lbl1 and rld1. Moreover, our observations suggest that maize yabby genes may direct lateral organ outgrowth rather than determine cell fate. We propose that a single genetic pathway involving lbl1, rld1 and the yabby genes integrates positional information within the SAM, and leads to adaxial/abaxial patterning and mediolateral outgrowth of the leaf.
To fully describe gene expression dynamics requires the ability to quantitatively capture expression in individual cells over time. Automated systems for acquiring and analyzing real-time images are needed to obtain unbiased data across many samples and conditions. We developed a microfluidics device, the RootArray, in which 64 Arabidopsis thaliana seedlings can be grown and their roots imaged by confocal microscopy over several days without manual intervention. To achieve high throughput, we decoupled acquisition from analysis. In the acquisition phase, we obtain images at low magnification and segment to identify regions of interest. Coordinates are communicated to the microscope to record the regions of interest at high magnification. In the analysis phase, we reconstruct 3D objects from stitched high magnification images, and extract quantitative measurements from a virtual medial section of the root. We tracked hundreds of roots to capture detailed expression patterns of 12 transgenic reporter lines under different conditions.
Background: Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate), female (megasporangiate), and vegetative organs (leaves) of Ginkgo biloba.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.