We report on an indirect and non-invasive method to simultaneously characterise the energydependent emittance and source size of ultra-relativistic positron beams generated during the propagation of a laser-wakefield accelerated electron beam through a high-Z converter target. The strong correlation of the geometrical emittance of the positrons with that of the scattered electrons allows the former to be inferred, with high accuracy, from monitoring the latter. The technique has been tested in a proof-of-principle experiment where, for 100 MeV positrons, we infer geometrical emittances and source sizes of the order of e + ≈ 3 µm and D e + ≈ 150 µm, respectively. This is consistent with the numerically predicted possibility of achieving sub-µm geometrical emittances and micron-scale source sizes at the GeV level.
Implementation of a novel experimental approach using a bright source of narrowband x-ray emission has enabled the production of a photoionized argon plasma of relevance to astrophysical modelling codes such as Cloudy. We present results showing that the photoionization parameter ζ = 4πF/ne generated using the VULCAN laser was ≈ 50 erg cm s−1, higher than those obtained previously with more powerful facilities. Comparison of our argon emission-line spectra in the 4.15 - 4.25 Å range at varying initial gas pressures with predictions from the Cloudy code and a simple time-dependent code are also presented. Finally we briefly discuss how this proof-of-principle experiment may be scaled to larger facilities such as ORION to produce the closest laboratory analogue to a photoionized plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.