Abstract. The focus of this essay is to examine the market for copyrighted works with a particular emphasis on the sound recording market. This market is currently in a state of flux, some would say disarray, due to the ability of the Internet to lower transmission costs for both authorized and unauthorized copies, with the latter being, at this time, far more prevalent. In this essay we discuss the intent of copyright, the role of copying and file-sharing, and some alternative production/consumption schemes meant to strengthen or to replace copyright.
Intraoperative monitoring of electroencephalography (EEG) data can help assess brain integrity and/or depth of anesthesia. We demonstrate a computer generated technique which provides a visually robust display of EEG data plotted as 'phase space trajectories' and a mathematically derived parameter ('dimensionality') which may correlate with depth of anesthesia. Application of nonlinear mathematical analysis, used to describe complex dynamical systems, can characterize 'phase space' EEG patterns by identifying attractors (geometrical patterns in phase space corresponding to specific ordered EEG data subjects) and by quantifying the degree of order and chaos (calculation of dimensionality). Dimensionality calculations describe the degree of complexity in a signal and may generate a clinically useful univariate EEG descriptor of anesthetic depth. In this paper we describe and demonstrate phase space trajectories generated for sine waves, mixtures of sine waves, and white noise (random chaotic events). We also present EEG phase space trajectories and dimensionality calculations from a patient undergoing surgery and general anesthesia in 3 recognizable states: awake, anesthetized, and burst suppression. Phase space trajectories of the three states are visually distinguishable, and dimensionality calculations indicate that EEG progresses from 'chaos' (awake) to progressively more 'ordered' attractors (anesthetized and burst suppression).
Radiation from the interior of a dynamic hohlraum within a wire-array Z pinch is used to generate high-power x-ray pulses in both the up and down axial directions through radiation exit holes (REHs) in the anode and cathode, respectively. Despite a concerted effort to ensure a symmetrical up-down configuration, the measured peak top radiated power remained about twice that of the bottom (with similar total radiated energies from each REH), as compared to current simulations that predict equal powers. This large asymmetry suggests the need for improved physics models and simulation capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.