Bacteriocins, defined as ribosomally synthesized antimicrobial peptides, have traditionally been used as food preservatives, either added or produced by starter cultures during fermentation. In-depth studies of a select few bacteriocins opened exiting new research fields and broadened the application of these antimicrobial peptides. The possibility of developing bacteriocins into next generation antibiotics, accompanied with the rapid development in genetics and nanotechnology, paves the way to even more fascinating applications such as novel carrier molecules (delivery systems) and the treatment of cancer. Also, some bacteriocins are found to regulate quorum sensing which suggests novel applications for this group of substances. While there is some interesting translational research on bacteriocins from Gram-negative bacteria, the majority of application-oriented studies are focused on bacteriocins from Gram-positive microorganisms, mostly lactic acid bacteria. The applications of bacteriocins are expanding from food to human health.
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
The consequences of drug-based Arp2/3 inhibition in sea urchin coelomocytes include dramatic changes in lamellipodial architecture, a lamellipodial-to-filopodial shape change in suspended cells, and a novel actin structural organization in spreading cells. The generation of actin arcs induced by Arp2/3 inhibition is arrested by formin inhibition.
In this study, the effects of several key factors to increase spore production by Bacillus subtilis subsp. KATMIRA 1933 were evaluated in shake flask experiments. In a synthetic medium, glucose concentration played a crucial role in the expression of bacilli sporulation capacity. In particular, maximum spore yield (2.3 × 10 spores/mL) was achieved at low glucose concentration (2 g/L), and further gradual increase of the carbon source content in the medium caused a decrease in sporulation capacity. Substitution of glucose with several inexpensive lignocellulosic materials was found to be a reasonable way to achieve high cell density and sporulation. Of the materials tested, milled mandarin peels at a concentration of 40 g/L served as the best growth substrate. In these conditions, bacilli secreted sufficient levels of glycosyl hydrolases, providing slow hydrolysis of the mandarin peel's polysaccharides to metabolizable sugars, providing the bacterial culture with an adequate carbon and energy source. Among nitrogen sources tested, peptone was found to favor spore production. Moreover, it was shown that cheese and cottage cheese whey usage, instead of distilled water, significantly increases spore formation. After optimization of the nutrient medium in the shake flask experiments, the technical feasibility of large-scale spore production by B. subtilis KATMIRA 1933 was confirmed in a laboratory fermenter. The spore yield (7 × 10 spores/mL) obtained using a bioreactor was higher than those previously reported.
One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.