BackgroundThe pathogenesis of Alzheimer's disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr682. Tyr682 is part of the Y682ENPTY687 motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr682 in vitro. However, physiological functions of Tyr682 are unknown.Methodology/Principal FindingsTo this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr682 in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr682 for the APP/Fe65 interaction in vivo.Conclusions/SignificanceTogether, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.
BackgroundRegulated intramembrane proteolysis of the β-amyloid precursor protein by the γ-secretase yields two peptides. One, amyloid-β, is the major component of the amyloid plaques found in Alzheimer's disease patients. The other, APP IntraCellular Domain, has been involved in regulation of apoptosis, calcium flux and gene transcription. To date, a few potential target genes transcriptionally controlled by AID, alone or complexed with Fe65/Tip60, have been described. Although the reports are controversial: these include KAI1, Neprilysin, p53, EGFR, LRP and APP itself. Furthermore, p53 has been implicated in AID mediated susceptibility to apoptosis. To extend these findings, and assess their in vivo relevance, we have analyzed the expression of the putative target genes and of the total brain basal transriptoma in transgenic mice expressing AID in the forebrain. Also, we have studied the susceptibility of primary neurons from such mice to stress and pro-apoptotic agents.ResultsWe found that AID-target genes and the mouse brain basal transcriptoma are not influenced by transgenic expression of AID alone, in the absence of Fe65 over-expression. Also, experiments conducted on primary neurons from AID transgenic mice, suggest a role for AID in sensitizing these cells to toxic stimuli. Overall, these findings hint that a role for AID, in regulating gene transcription, could be induced by yet undefined, and possibly stressful, stimuli in vivo.ConclusionOverall, these data suggest that the release of the APP intracellular domain may modulate the sensitivity of neuronal cells to toxic stimuli, and that a transcriptional role of AID could be inscribed in signaling pathways thatare not activated in basal conditions.
Glucose is provided to cells by a family of glucose transport facilitators known as GLUTs. These transporters are expressed in a tissue specific manner and are overexpressed in many primary tumors of these tissues. Regulation of glucose transport facilitator expression has been demonstrated in endometrial tissue and endometrial adenocarcinoma. The following experiments were conducted to quantify and localize the expression of GLUT1 and GLUT8 in benign endometrium and compare this expression to endometrial cancer. Endometrial tissue samples were obtained from random hysterectomy specimens of patients with benign indications for surgery and endometrial cancer. Immunoblot and immunolocatization studies were performed using GLUT1 and GLUT8 specific antisera. Endometrial samples from 65 women who had undergone hysterectomy were examined (n ¼ 38 benign, n ¼ 27 malignant). A 44 and a 35.4 kDa immunoreacive species was demonstrated in endometrium and endometrial cancer for GLUT1 and GLUT8, respectively. Upregulation of GLUT1 expression was demonstrated with increasing grade of tumors (Po0.002). GLUT8 expression was increased in all tumor subtypes compared to atrophic endometrium (Po0.001). Apical localization by GLUT1 and GLUT8 was demonstrated in endometrial glands. GLUT1 and GLUT8 demonstrated diffuse intracellular localization in the cancer subtypes. GLUT1 and GLUT8 are expressed in both human endometrium and endometrial cancer. There appears to be a step-wise progression in GLUT1 and GLUT8 expression as tumor histopathology worsens. GLUT1 and GLUT8 may be important markers in tumor differentiation, as well as providing energy to rapidly dividing tumor cells.
Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1؉/؊) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(؊/؊) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(؉/؉) and GT1(؉/؊) embryonic stem cells. GT1(؉/؊) demonstrated 49 ؎ 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 ؎ 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(؉/؊). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(؉/؊), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(؉/؊) than in GT1(؉/؉) controls. Caspase-3 activity was 76% higher in GT1(؉/؊) versus GT1(؉/؉) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.