It has often been observed anecdotally and implied through experimentation that acrylic emulsion paintings accumulate and entrain soils over time due to the inherent mechanical softness in artist's acrylic paint films, through the presence of hydrophilic film components, and by virtue of the ubiquitous presence of surfactant moieties on these film surfaces once they dry. In the present study, it has been this last effect that we have sought to describe more fully in terms of surfactant responsiveness to both temperature and relative humidity (RH). Surfactant hydration and dehydration under varying temperature and RH conditions affects the ultimate partitioning of the surfactant at the paint-air interface, as well as the inherent size, aggregation tendencies, and solubility of surfactant in the bulk paint materials which contain components that are highly responsive to changes in temperature and RH (e.g. polyacrylic or polymaleic anhydride-type dispersal materials). In this work, analytical techniques including three-dimensional microscopy and quartz crystal microbalance with dissipation were used to add to and reinforce current understanding of the physical and mechanical changes to acrylic paint films with temperature and RH. The migration of surfactant at the film surface was studied using desorption electrospray ionization-mass spectrometry and attenuated total reflectance Fourier transform infrared microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.