Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection.
The genetic differentiation among several laboratory-maintained pedigree snail lines of Biomphalaria glabrata (with different susceptibility phenotypes to Schistosoma mansoni infection) was assessed with the random amplified polymorphic DNA method. Out of the 20 primers tested, 2 (OPA-01 and OPA-06) gave reproducible markers with either individual or bulked DNA samples from resistant (BS-90, 10-R2, LAC-line) and susceptible (M-line) snails. Arbitrary primer, OPA-01, amplification of BS-90 DNA identified a 180-bp strain-specific fragment and a 400-bp marker in the susceptible M-line stock. In the 10-R2 and LAC snail lines, OPA-01 specific markers of 200 bp and 550 bp were identified. Amplification with primer OPA-06 identified several major strain-specific markers in the BS-90 (150 bp, 400 bp, 800 bp) and M-line (1,100 bp) snails. The heritability of the RAPD markers was evaluated in progeny snails derived from a cross between the BS-90 and M-line stocks. Results showed that markers were inherited in a dominant or codominant fashion. The 1,100-bp M-line marker was inherited in all susceptible progeny snails analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.