Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
No abstract
Catalysis and synthesis are intimately linked in modern organic chemistry. The synthesis of complex molecules is an ever evolving area of science. In many regards, the inherent beauty associated with a synthetic sequence can be linked to a certain combination of the creativity with which a sequence is designed and the overall efficiency with which the ultimate process is performed. In synthesis, as in other endeavors, beauty is very much in the eyes of the beholder.[**] It is with this in mind that we will attempt to review an area of synthesis that has fascinated us and that we find extraordinarily beautiful, namely the combination of catalysis and sigmatropic rearrangements in consecutive and cascade sequences.
Material and Methods. Unless stated otherwise, reactions were performed in flame-dried glassware under a nitrogen or argon atmosphere using dry, deoxygenated solvents. All other commercially obtained reagents were used as received. Solvents were dried by passage through an activated alumina column under argon. Reaction temperatures were controlled by an IKAmag temperature modulator. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV or anisaldehyde staining. ICN Silica gel (particle size 0.032-0.063 mm) was used for flash chromatography. Disposable SepPak C 18 Vac Cartridges were purchased from Waters and used for all reversed-phase filtrations.HPLC analysis was performed on a Beckman Gold system using a Rainin C 18 , Microsorb MV, 5mm, 300 x 4.6 mm reversed-phased column in 0.1% (wt/v) TFA with acetonitrile as eluent and a flow rate of 1.0 mL/min, gradient elution of 1.25% acetonitrile/min. Preparatory reversed-phase HPLC was performed on a Beckman HPLC with a Waters DeltaPak 25 x 100 mm, 100 mm C 18 column equipped with a guard, 0.1% (wt/v) TFA with acetonitrile as eluent, and gradient elution of 0.50% acetonitrile/min. For all reversed-phase purifications, water (18MW) was obtained from a Millipore MiliQ water purification system and TFA from Halocarbon, Inc.
Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl-and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl-and chlorothiazolylneonicotinoids induce SA responses associated with enhanced stress tolerance.N eonicotinoids are the newest of the three major classes of insecticides, which also include the organophosphorus compounds and pyrethroids. Imidacloprid (IMI), with a chloropyridinyl (Cl-pyr) substituent, is the most important neonicotinoid, used primarily as a systemic compound absorbed and translocated by plants to control sucking insect pests (1). The neonicotinoids clothianidin (2) (CLO) and a metabolic precursor, the oxadiazine compound thiamethoxam (3, 4), which have chlorothiazolyl (Cl-thia) substituents, are also extensively used as systemic insecticides in plants. The neonicotinoids IMI and CLO are oxidatively cleaved in planta to 6-chloropyridinyl-3-carboxylic acid (CPA) and 2-chlorothiazolyl-5-carboxylic acid (CTA), respectively, among other metabolites (5). In studying metabolism of neonicotinoids in spinach (5) under insect-free conditions, we sometimes observed enhancement of foliage growth, plant vigor, and drought-tolerance. These remarkable effects of neonicotinoids directly on plants, independent of controlling insect pests, have also been noted by many researchers and farmers and documented in both research publications and patent disclosures, especially for IMI (6-8) and the CLO precursor, thiamethoxam (9). In addition, treatment with IMI...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.