This paper presents an efficient hybrid feature selection model based on Support Vector Machine (SVM) and Genetic Algorithm (GA) for large healthcare databases. Even though SVM and GA are robust computational paradigms, the combined iterative nature of a SVM-GA hybrid system makes runtime costs infeasible when using large databases. This paper utilizes hierarchical clustering to reduce dataset size and SVM training time, multi-resolution parameter search for efficient SVM model selection, and chromosome caching to avoid redundant fitness evaluations. This approach significantly reduces runtime and improves classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.