Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.
SignificanceMarine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
A global survey of reef fishes shows that the consequences of biodiversity loss are greater than previously anticipated as ecosystem functioning remained unsaturated with the addition of new species. Additionally, reefs worldwide, particularly those most diverse, are highly vulnerable to human impacts that are widespread and likely to worsen due to ongoing coastal overpopulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.