The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.
The question of whether time is its own best representation is explored. Though there is theoretical debate between proponents of internal models and embedded cognition proponents concerning whether the world is its own best model, proponents of internal models are often content to let time be its own best representation. This happens via the time update of the model that simply allows the model's state to evolve along with the state of the modeled domain. I argue that this is neither necessary nor advisable. I show that this is not necessary by describing how internal modeling approaches can be generalized to schemes that explicitly represent time by maintaining trajectory estimates rather than state estimates. Though there are a variety of ways this could be done, I illustrate the proposal with a scheme that combines filtering, smoothing and prediction to maintain an estimate of the modeled domain's trajectory over time. I show that letting time be its own representation is not advisable by showing how trajectory estimation schemes can provide accounts of temporal illusions, such as apparent motion, that pose serious difficulties for any scheme that lets time be its own representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.