The prevalence of wheat allergy has reached significant levels in many countries. Therefore, wheat is a major global food safety and public health issue. Animal models serve as critical tools to advance the understanding of the mechanisms of wheat allergenicity to develop preventive and control methods. A comprehensive review on the molecular mechanisms of wheat allergenicity using animal models is unavailable at present. There were two major objectives of this study: To identify the lessons that animal models have taught us regarding the molecular mechanisms of wheat allergenicity and to identify the strengths, challenges, and future prospects of animal models in basic and applied wheat allergy research. Using the PubMed and Google Scholar databases, we retrieved and critically analyzed the relevant articles and excluded celiac disease and non-celiac gluten sensitivity. Our analysis shows that animal models can provide insight into the IgE epitope structure of wheat allergens, effects of detergents and other chemicals on wheat allergenicity, and the role of genetics, microbiome, and food processing in wheat allergy. Although animal models have inherent limitations, they are critical to advance knowledge on the molecular mechanisms of wheat allergenicity. They can also serve as highly useful pre-clinical testing tools to develop safer genetically modified wheat, hypoallergenic wheat products, novel pharmaceuticals, and vaccines.
Wheat allergy is a potentiallylife-threatening disease that affects millions of people around the world. Food processing has been shown to influence the allergenicity of wheat and other major foods. However, a comprehensive review evaluating whether or not food processing can be used to develop hypo-/nonallergenic wheat products is unavailable. There were three objectives for this study: (1) to critically evaluate the evidence on the effect of fermentation, thermal processing, and enzyme or acid hydrolysis on wheat allergenicity so as to identify the potential for and challenges of using these methods to produce hypo-/nonallergenic wheat products; (2) to identify the molecular effects of food processing needed to create such products; and (3) to map the concept questions for future research and development to produce hypo-/nonallergenic wheat products. We performed literature research using PubMed and Google Scholar databases with various combinations of keywords to generate the data to accomplish these objectives. We found that: (1) food processing significantly modulates wheat allergenicity; while some methods can reduce or even abolish the allergenicity, others can create mega allergens; and (2) fermentation and enzymatic hydrolysis hold the most potential to create novel hypo-/nonallergenic wheat products; however, preclinical validation and human clinical trials are currently lacking. We also identify five specific research concepts to advance the research to enable the creation of hypo-/nonallergenic wheat products for application in food, medical, and cosmetic industries.
Wheat protein is considered a major type of food allergen in many countries including the USA. The mechanisms of allergenicity of wheat proteins are not well understood at present. Both adjuvant-based and adjuvant-free mouse models are reported for this food allergy. However, it is unclear whether the mechanisms underlying wheat allergenicity in these two types of models are similar or different. Therefore, we compared the molecular mechanisms in a novel adjuvant-free (AF) model vs. a conventional alum-adjuvant (AA) model of wheat allergy using salt-soluble wheat protein (SSWP). In the AF model, Balb/cJ mice were sensitized with SSWP via skin exposure. In the AA model, mice were sensitized by an intraperitoneal injection of SSWP with alum. In both models, allergic reactions were elicited using an identical protocol. Robust IgE as well as mucosal mast cell protein-1 responses were elicited similarly in both models. However, an analysis of the spleen immune markers identified strikingly different molecular activation patterns in these two models. Furthermore, a number of immune markers associated with intrinsic allergenicity were also identified in both models. Since the AF model uses skin exposure without an adjuvant, the mechanisms in the AF model may more closely simulate the human wheat allergenicity mechanisms from skin exposure in occupational settings such as in the baking industry.
Wheat is a major food allergen per the regulatory bodies of various nations. Hypersensitivity reactions to wheat have been steadily increasing for reasons that are not completely understood. Wheat-allergy models typically use adjuvants to induce sensitization to wheat proteins followed by an intraperitoneal challenge to elicit anaphylaxis. Although these models are very useful, they lack the ability to reveal the intrinsic allergenicity potential of wheat. To improve the mouse model of wheat allergy, we tested the hypothesis that repeated skin application of salt-soluble protein extract (SSPE) from durum wheat will clinically sensitize the mice to oral anaphylaxis to SSPE. Balb/c mice were bred and maintained on a plant-protein-free diet and used in the experiments. Adult female mice were exposed to SSPE once a week for 9 weeks via a solution on intact skin. Sensitization was measured by SSPE-specific IgE (sIgE) antibody and total IgE (tIgE) levels. Oral anaphylaxis was quantified by hypothermic shock response (HSR), and mucosal mast cell response (MMCR) was quantified by measuring MMCP-1 after oral challenge. Using single mouse data, correlation analyses were performed to determine the relationship among the allergenicity readouts. Spleen cytokines were quantified using a protein microarray method. Our results show that (i) repeated skin exposures to SSPE elicited robust increases in the sIgE and tIgE levels; (ii) skin exposure to SSPE was sufficient to sensitize mice for oral anaphylaxis and MMCR; (iii) both HSR and MMCR showed a strong correlation with each other, as well as with sIgE, and a modest correlation with tIgE levels; (iv) selected Th2/Th17/Th1 cytokines were elevated in skin-sensitized mice; and (v) oral allergen-challenged mice showed selective elevation of IL-6 and a panel of chemokines compared to saline-challenged mice. Together, we report the development and characterization of a novel adjuvant-free wheat-allergy mouse model that uses skin sensitization without tape-stripping followed by oral elicitation of anaphylaxis. Furthermore, validation of quantifiable wheat allergenicity readouts makes this model particularly suitable as a pre-clinical testing tool to assess the intrinsic sensitization/oral-anaphylaxis elicitation potential of novel wheat proteins (e.g., processed wheat) and to develop hypo/non-allergenic wheat products.
Wheat allergies are potentially life-threatening because of the high risk of anaphylaxis. Wheats belong to four genotypes represented in thousands of lines and varieties. Monitoring changes to wheat allergens is critical to prevent inadvertent ntroduction of hyper-allergenic varieties via breeding. However, validated methods for this purpose are unavailable at present. As a proof-of-concept study, we tested the hypothesis that salt-soluble wheat allergens in our mouse model will be identical to those reported for humans. Groups of Balb/cJ mice were rendered allergic to durum wheat salt-soluble protein extract (SSPE). Using blood from allergic mice, a mini hyper-IgE plasma bank was created and used in optimizing an IgE Western blotting (IEWB) to identify IgE binding allergens. The LC-MS/MS was used to sequence the allergenic bands. An ancient Aegilops tauschii wheat was grown in our greenhouse and extracted SSPE. Using the optimized IEWB method followed by sequencing, the cross-reacting allergens in A. tauschii wheat were identified. Database analysis showed all but 2 of the durum wheat allergens and all A. tauschii wheat allergens identified in this model had been reported as human allergens. Thus, this model may be used to identify and monitor potential changes to salt-soluble wheat allergens caused by breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.