A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland Global Change Biology (2015Biology ( ) 21, 1980Biology ( -1992Biology ( , doi: 10.1111 product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website.
The ability to regionally monitor crop progress and condition through the growing season benefits both crop management and yield estimation. In the United States, these metrics are reported weekly at state or district (multiple counties) levels by the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) using field observations provided by trained local reporters. However, the ground data collection process supporting this effort is time consuming and subjective. Furthermore, operational crop management and yield estimation efforts require information with more granularity than at the state or district level. This paper evaluates remote sensing approaches for mapping crop phenology using vegetation index time-series generated by fusing Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) surface reflectance imagery to improve temporal sampling over that provided by Landsat alone. The case study focuses on an agricultural region in central Iowa from 2001 to 2014. Our objectives are 1) to assess Landsat-MODIS data fusion results over cropland; 2) to map crop phenology at 30m resolution using fused surface reflectance data; and 3) to identify the relationships between remotely sensed crop phenology metrics and the crop progress stages reported by NASS. The results show that detailed spatial and
This study examines the evolution of several model-based and satellite-derived drought metrics sensitive to soil moisture and vegetation conditions during the extreme flash drought event that impacted major agricultural areas across the central U.S. during 2012. Standardized anomalies from the remote sensing based Evaporative Stress Index (ESI) and Vegetation Drought Response Index (VegDRI) and soil moisture anomalies from the North American Land Data Assimilation System (NLDAS) are compared to the United States Drought Monitor (USDM), surface meteorological conditions, and crop and soil moisture data compiled by the National Agricultural Statistics Service (NASS). Overall, the results show that rapid decreases in the ESI and NLDAS anomalies often preceded drought intensification in the USDM by up to 6 weeks depending on the region. Decreases in the ESI tended to occur up to several weeks before deteriorations were observed in the crop condition datasets. The NLDAS soil moisture anomalies were similar to those depicted in the NASS soil moisture datasets; however, some differences were noted in how each model responded to the changing drought conditions. The VegDRI anomalies tracked the evolution of the USDM drought depiction in regions with slow drought development, but lagged the USDM and other drought indicators when conditions were changing rapidly. Comparison to the crop condition datasets revealed that soybean conditions were most similar to ESI anomalies computed over short time periods (2-4 weeks), whereas corn conditions were more closely related to longer-range (8-12 week) ESI anomalies. Crop yield departures were consistent with the drought severity depicted by the ESI and to a lesser extent by the NLDAS and VegDRI datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.