Clinical tractography is a challenging problem in diffusion tensor imaging (DTI) due to persistent validation issues. Geodesic tractography, based on a shortest path principle, is conceptually appealing, but has not produced convincing results so far. A major weakness is its rigidity with respect to candidate tracts it is capable of producing given a pair of endpoints, showing a tendency to produce false positives (such as shortcuts) and false negatives (e.g. if a shortcut supplants the correct solution). We propose a new geodesic paradigm that appears to overcome these problems, making a step towards semi-automatic clinical use. To this end we couple the DTI tensor field to a family of Riemannian metrics, governed by control parameters. In practice these parameters may allow for edits by an expert through manual selection among multiple tract suggestions, or for bringing in a priori knowledge. In this paper, however, we consider an automatic, evidence-driven procedure to determine optimal controls and corresponding tentative tracts, and illustrate the role of edits to remediate erroneous defaults.
We study theoretical and operational issues of geodesic tractography, a geometric methodology for retrieving biologically plausible neural fibers in the brain from diffusion weighted magnetic resonance imaging. The premise is that true positives are geodesics in a suitably constructed metric space, but unlike traditional first order methods these are not a priori constrained to connect nongeneric points on subdimensional manifolds, such as the characteristics in traditional streamline methods. By virtue of the Hopf-Rinow theorem geodesic tractography furnishes a huge amount of redundancy, ensuring the a priori existence of at least one tentative fiber between any two points and permitting additional tractometric and data-extrinsic constraints for (fuzzy or crisp) classification of true and false positives. In our feasibility study we consider a hybrid paradigm that unifies existing ideas on tractography, combining deterministic and probabilistic elements in a way naturally supported by metric geometry. Particular attention is paid to an analytical prediction of geodesic deviation on numerically computed geodesics, a ‘tidal’ effect induced by small perturbations resulting from data noise. Taking these effects into account clarifies the inherent uncertainty of geodesics, while simultaneosuly offering a dimensionality reduction of the tractography problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.