The increasing importance of renewable energy, especially solar and wind power, has led to new forces in the formation of electricity prices. Hence, this paper introduces an econometric model for the hourly time series of electricity prices of the European Power Exchange (EPEX) which incorporates specific features like renewable energy. The model consists of several sophisticated and established approaches and can be regarded as a periodic VAR-TARCH with wind power, solar power, and load as influences on the time series. It is able to map the distinct and well-known features of electricity prices in Germany. An efficient iteratively reweighted lasso approach is used for the estimation. Moreover, it is shown that several existing models are outperformed by the procedure developed in this paper.
Our paper aims to model and forecast the electricity price by taking a completely new perspective on the data. It will be the first approach which is able to combine the insights of market structure models with extensive and modern econometric analysis. Instead of directly modeling the electricity price as it is usually done in time series or data mining approaches, we model and utilize its true source: the sale and purchase curves of the electricity exchange. We will refer to this new model as X-Model, as almost every deregulated electricity price is simply the result of the intersection of the electricity supply and demand curve at a certain auction. Therefore we show an approach to deal with a tremendous amount of auction data, using a subtle data processing technique as well as dimension reduction and lasso based estimation methods. We incorporate not only several known features, such as seasonal behavior or the impact of other processes like renewable energy, but also completely new elaborated stylized facts of the bidding structure. Our model is able to capture the non-linear behavior of the electricity price, which is especially useful for predicting huge price spikes. Using simulation methods we show how to derive prediction intervals for probabilistic forecasting. We describe and show the proposed methods for the day-ahead EPEX spot price of Germany and Austria.
The liberalization of electricity markets and the development of renewable energy sources has led to new challenges for decision makers. These challenges are accompanied by an increasing uncertainty about future electricity price movements. The increasing amount of papers, which aim to model and predict electricity prices for a short period of time provided new opportunities for market participants. However, the electricity price literature seem to be very scarce on the issue of medium-to long-term price forecasting, which is mandatory for investment and political decisions. Our paper closes this gap by introducing a new approach to simulate electricity prices with hourly resolution for several months up to three years. Considering the uncertainty of future events we are able to provide probabilistic forecasts which are able to detect probabilities for price spikes even in the long-run. As market we decided to use the EPEX day-ahead electricity market for Germany and Austria. Our model extends the X-Model which mainly utilizes the sale and purchase curve for electricity day-ahead auctions. By applying our procedure we are able to give probabilities for the due to the EEG practical relevant event of six consecutive hours of negative prices. We find that using the supply and demand curve based model in the long-run yields realistic patterns for the time series of electricity prices and leads to promising results considering common error measures.
In our paper we analyze the relationship between the day-ahead electricity price of the Energy Exchange Austria (EXAA) and other day-ahead electricity prices in Europe. We focus on markets, which settle their prices after the EXAA, which enables traders to include the EXAA price into their calculations. For each market we employ econometric models to incorporate the EXAA price and compare them with their counterparts without the price of the Austrian exchange. By employing a forecasting study, we find that electricity price models can be improved when EXAA prices are considered.
Due to the liberalization of markets, the change in the energy mix and the surrounding energy laws, electricity research is a dynamically altering field with steadily changing challenges. One challenge especially for investment decisions is to provide reliable short to mid-term forecasts despite high variation in the time series of electricity prices. This paper tackles this issue in a promising and novel approach. By combining the precision of econometric autoregressive models in the short-run with the expectations of market participants reflected in future prices for the short-and mid-run we show that the forecasting performance can be vastly increased while maintaining hourly precision. We investigate the day-ahead electricity price of the EPEX Spot for Germany and Austria and setup a model which incorporates the Phelix future of the EEX for Germany and Austria. The model can be considered as an AR24-X model with one distinct model for each hour of the day. We are able to show that future data contains relevant price information for future time periods of the day-ahead electricity price. We show that relying only on deterministic external regressors can provide stability for forecast horizons of multiple weeks. By implementing a fast and efficient lasso estimation approach we demonstrate that our model can outperform several other models in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.