We implemented a machine learning approach to investigate individual indicators of training load and wellness that may predict the emergence or development of overuse injuries in professional volleyball. In this retrospective study, we collected data of 14 elite volleyball players (mean ± SD age: 27 ± 3 years, weight: 90.5 ± 6.3 kg, height: 1.97 ± 0.07 m) during 24 weeks of the 2018 international season. Physical load was tracked by manually logging the performed physical activities and by capturing the jump load using wearable devices. On a daily basis, the athletes answered questions about their wellness, and overuse complaints were monitored via the Oslo Sports Trauma Research Center (OSTRC) questionnaire. Based on training load and wellness indicators, we identified subgroups of days with increased injury risk for each volleyball player using the machine learning technique Subgroup Discovery. For most players and facets of overuse injuries (such as reduced sports participation), we have identified personalized training load and wellness variables that are significantly related to overuse issues. We demonstrate that the emergence and development of overuse injuries can be better understood using daily monitoring, taking into account interactions between training load and wellness indicators, and by applying a personalized approach. Highlights. With detailed, athlete-specific monitoring of overuse complaints and training load, practical insights in the development of overuse injuries can be obtained in a player-specific fashion contributing to injury prevention in sports.. A multi-dimensional and personalized approach that includes interactions between training load variables significantly increases the understanding of overuse issues on a personal basis.. Jump load is an important predictor for overuse injuries in volleyball.
In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical load data were obtained by manually logging all physical activities and using wearable sensors. Daily wellness of players was monitored using questionnaires. Match performance was derived from annotated actions by a video scout during matches. We identified conditions of predictor variables that related to attack and pass performance (p < 0.05). Better attack performance is related to heavy weights of lower-body strength training exercises in the preceding four weeks. However, worse attack performance is linked to large variations in weights of full-body strength training exercises, excessively heavy upper-body strength training, low jump heights and small variations in the number of high jumps in the four weeks prior to competition. Lower passing performance was associated with small variations in the number of high jumps in the preceding week and an excessive amount of high jumps performed, on average, in the two weeks prior to competition. Differences in findings with respect to passing and attack performance suggest that elite volleyball players can improve their performance if training schedules are adapted to the position of a player.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.