Abstract-Sleep positions have an impact on sleep quality and therefore need to be further analyzed. Current research on position tracking includes only the four basic positions. In the context of wearable devices, energy efficiency is still an open issue. This research presents a way to detect eight positions with higher granularity under energy efficient constraints. Generalized Matrix Learning Vector Quantization is used, as it is a fast and appropriate method for environments with limited computation resources, and has not been seen for this kind of application before. The overall model trained on individuals performs with an averaged accuracy of 99.8%, in contrast to an averaged accuracy of 83.62% for grouped datasets. Real world application gives an accuracy of around 98%. The results show that energy efficiency will be feasible, as performance stays similar for lower sampling rate. This is a step towards a mobile solution which gives more insight in person's sleep behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.