We describe an approach to simulate dynamic cavitation behavior based on large eddy simulation of the governing flow, using an implicit approach for the subgrid terms together with a wall model and a single fluid, two-phase mixture description of the cavitation combined with a finite rate mass transfer model. The pressure-velocity coupling is handled using a PISO algorithm with a modified pressure equation for improved stability when the mass transfer terms are active. The computational model is first applied to a propeller flow in homogeneous inflow in both wetted and cavitating conditions and then tested in an artificial wake condition yielding a dynamic cavitation behavior. Although the predicted cavity extent shows discrepancy with the experimental data, the most important cavitation mechanisms are present in the simulation, including internal jets and leading edge desinence. Based on the ability of the model to predict these mechanisms, we believe that numerical assessment of the risk of cavitation nuisance, such as erosion or noise, is tangible in the near future.
This paper analyses the nonlinear forces on a moored point-absorbing wave energy converter (WEC) in resonance at prototype scale (1:1) and at model scale (1:16). Three simulation types were used: Reynolds Averaged Navier-Stokes (RANS), Euler and the linear radiation-diffraction method (linear). Results show that when the wave steepness is doubled, the response reduction is: (i) 3% due to the nonlinear mooring response and the Froude-Krylov force; (ii) 1-4% due to viscous forces; and (iii) 18-19% due to induced drag and non-linear added mass and radiation forces. The effect of the induced drag is shown to be largely scale-independent. It is caused by local pressure variations due to vortex generation below the body, which reduce the total pressure force on the hull. Euler simulations are shown to be scale-independent and the scale effects of the WEC are limited by the purely viscous contribution (1-4%) for the two waves studied. We recommend that experimental model scale test campaigns of WECs should be accompanied by RANS simulations, and the analysis complemented by scale-independent Euler simulations to quantify the scale-dependent part of the nonlinear effects.
Abstract. In this paper, a methodology is presented for modelling underwater noise
emissions from ships based on realistic vessel activity in the Baltic Sea
region. This paper combines the Wittekind noise source model with the Ship
Traffic Emission Assessment Model (STEAM) in order to produce regular updates
for underwater noise from ships. This approach allows the construction of
noise source maps, but requires parameters which are not commonly available
from commercial ship technical databases. For this reason, alternative
methods were necessary to fill in the required information. Most of the
parameters needed contain information that is available during the STEAM
model runs, but features describing propeller cavitation are not easily
recovered for the world fleet. Baltic Sea ship activity data were used to
generate noise source maps for commercial shipping. Container ships were
recognized as the most significant source of underwater noise, and the
significant potential for an increase in their contribution to future noise emissions was identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.