Abstract.A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenskiöldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from Svalbard Airport. Extensive calibration and initialisation are performed to increase the model accuracy. For the period 1989-2010, we find a mean net mass balance of −0.39 m w.e. a −1 . Refreezing contributes on average 0.27 m w.e. a −1 to the mass budget and is most pronounced in the accumulation zone. The simulated mass balance, radiative fluxes and subsurface profiles are validated against observations and are generally in good agreement. Climate sensitivity experiments reveal a non-linear, seasonally dependent response of the mass balance, refreezing and runoff to changes in temperature and precipitation. It is shown that including seasonality in climate change, with less pronounced summer warming, reduces the sensitivity of the mass balance and equilibrium line altitude (ELA) estimates in a future climate. The amount of refreezing is shown to be rather insensitive to changes in climate.
[1] A characteristic feature of ground penetrating radar (GPR) surveys on polythermal glaciers is an internal reflection presumably caused by the cold temperate transition surface (CTS), hence providing a possible tool for mapping thermal structure with high accuracy. Comparison of detailed temperature measurements in bore holes and GPR profiles at 345 MHz and 800 MHz center frequencies on Storglaciären, Sweden, show that the CTS can be detected and mapped with an accuracy of about ±1 m at both frequencies. A comparison between comprehensive GPR surveys of the cold surface layer, separated by 12 years (1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001), shows a substantial and complex thinning of the cold layer. An overall decrease of 8.3 m (22% of average thickness) of the CTS depth is much larger than uncertainties in CTS depth determinations. The stability of the cold surface layer depends on the net ice ablation at the surface and the downward migration of CTS. There is no evidence of substantial increased net ablation between the survey dates that could explain the observed thinning. However, small increase in average winter air temperature, a limiting factor for the temperature gradient through the cold surface layer, may provide a partial explanation. The weaker temperature gradient reduces the transport of latent heat from the CTS, thus slowing down its downward migration.
We present surface velocity measurements from a high-elevation site located 140 km from the western margin of the Greenland ice sheet, and~50 km into its accumulation area. Annual velocity increased each year from 51.78 ± 0.01 m yr À1 in 2009 to 52.92 ± 0.01 m yr À1 in 2012-a net increase of 2.2%. These data also reveal a strong seasonal velocity cycle of up to 8.1% above the winter mean, driven by seasonal melt and supraglacial lake drainage. recently argued that ice motion in the ablation area is mediated by reduced winter flow following the development of efficient subglacial drainage during warmer, faster, summers. Our data extend this analysis and reveal a year-on-year increase in annual velocity above the equilibrium line altitude, where despite surface melt increasing, it is still sufficiently low to hinder the development of efficient drainage under thick ice.
Radar profiles of bed echo intensity can survey conditions at the ice-bed interface and test for the presence or absence of water. However, extracting information about basal conditions from bed echo intensities requires an estimate of the attenuation loss through the ice. We used the relationship between bed echo intensities from constant-offset radar data and ice thickness to estimate depthaveraged attenuation rates at several locations on and near Kamb Ice Stream (KIS), West Antarctica. We found values varying from 29 dB km -1 at Siple Dome to 15 dB km -1 in the main trunk region of KIS, in agreement with a previous measurement and models. Using these attenuation-rate values, we calculated the relative bed reflectivity throughout our KIS surveys and found that most of the bed in the trunk has high basal reflectivities, similar to those obtained in the location of boreholes that found water at the bed. Areas of lower bed reflectivity are limited to the sticky spot, where a borehole found a dry bed, and along the margins of KIS. These results support previous hypotheses that the basal conditions at locations like the sticky spot on KIS control its stagnation and possible reactivation.
[1] The volume fraction of liquid water in temperate glacier ice is important not only for the flow of glaciers and the analysis and processing of ground penetrating radar data from glaciers but also for the stability of the thermal layering in polythermal glaciers. However, little is known about the spatial variations of water content in glaciers. We use relative backscatter strength of ground-penetrating radar signals to estimate the spatial distribution of water content close to the cold-temperate transition on Storglaciären, northern Sweden, in an area close to the equilibrium line. The values of relative backscatter strength are calibrated using determinations of absolute water content from temperature measurements across the cold-temperate transition and the thermodynamic boundary condition at the freezing front. The results show a water content of 0.80%, 0.75%, and 0.58% at three calibration points and a mean water content of 0.8% with a standard deviation of ±0.26% for the extrapolated water content. The extrapolated water content shows a distinct pattern, with lower water content on one side of the glacier center line and higher water content on the other side, with higher water content on the northern side. We hypothesize that the different water contents result from the fact that the ice on either side of the center line originates from different cirques, thus implying spatial variations in the entrapment of water in the firn-ice transition process in the different cirques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.