Populations of native Panamanian golden frogs (Atelopus zeteki) have collapsed due to a recent chytridiomycosis epidemic. Reintroduction efforts from captive assurance colonies are unlikely to be successful without the development of methods to control chytridiomycosis in the wild. In an effort to develop a protective treatment regimen, we treated golden frogs with Janthinobacterium lividum, a skin bacterium that has been used to experimentally prevent chytridiomycosis in North American amphibians. Although J. lividum appeared to colonize A. zeteki skin temporarily, it did not prevent or delay mortality in A. zeteki exposed to Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis. After introduction of J. lividum, average bacterial cell counts reached a peak of 1.7 9 10 6 cells per frog *2 weeks after treatment but declined steadily after that. When J. lividum numbers declined to *2.8 9 10 5 cells per frog, B. dendrobatidis infection intensity increased to greater than 13,000 zoospore equivalents per frog. At this point, frogs began to die of chytridiomycosis. Future research will concentrate on isolating and testing antifungal bacterial species from Panama that may be more compatible with Atelopus skin.
Freshwater cyclopoid copepods exhibit at least a fivefold range in somatic genome size and a mechanism, chromatin diminution, which could account for much of this interspecific variation. These attributes suggest that copepods are well suited to studies of genome size evolution. We tested the nucleotypic hypothesis of genome size evolution, which poses that variation in genome size is adaptive due to the 'bulk' effects of both coding and noncoding DNA on cell size and division rates, and their correlates. We found a significant inverse correlation between genome size and developmental (growth) rate in five freshwater cyclopoid species at three temperatures. That is, species with smaller genomes developed faster. Species with smaller genomes had significantly smaller bodies at 22°C, but not at cooler and warmer temperatures. Species with smaller genomes developed faster at all three temperatures, but had smaller bodies only at 22°C. We propose a model of life history evolution that adds genome size and cell cycle dynamics to the suite of characters on which selection may act to mold life histories and to influence the distribution of traits among different habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.