The two homologous genes GPD1 and GPD2 encode the isoenzymes of NAD-dependent glycerol 3-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae. Previous studies showed that GPD1 plays a role in osmoadaptation since its expression is induced by osmotic stress and gpd1 delta mutants are osmosensitive. Here we report that GPD2 has an entirely different physiological role. Expression of GPD2 is not affected by changes in external osmolarity, but is stimulated by anoxic conditions. Mutants lacking GPD2 show poor growth under anaerobic conditions. Mutants deleted for both GPD1 and GPD2 do not produce detectable glycerol, are highly osmosensitive and fail to grow under anoxic conditions. This growth inhibition, which is accompanied by a strong intracellular accumulation of NADH, is relieved by external addition of acetaldehyde, an effective oxidizer of NADH. Thus, glycerol formation is strictly required as a redox sink for excess cytosolic NADH during anaerobic metabolism. The anaerobic induction of GPD2 is independent of the HOG pathway which controls the osmotic induction of GPD1. Expression of GPD2 is also unaffected by ROX1 and ROX3, encoding putative regulators of hypoxic and stress-controlled gene expression. In addition, GPD2 is induced under aerobic conditions by the addition of bisulfite which causes NADH accumulation by inhibiting the final, reductive step in ethanol fermentation and this induction is reversed by addition of acetaldehyde. We conclude that expression of GPD2 is controlled by a novel, oxygen-independent, signalling pathway which is required to regulate metabolism under anoxic conditions.
We have characterized the strongly homologous GPP1/RHR2 and GPP2/HOR2 genes, encoding isoforms of glycerol 3-phosphatase. Mutants lacking both GPP1 and GPP2 are devoid of glycerol 3-phosphatase activity and produce only a small amount of glycerol, confirming the essential role for this enzyme in glycerol biosynthesis. Overproduction of Gpp1p and Gpp2p did not significantly enhance glycerol production, indicating that glycerol phosphatase is not rate-limiting for glycerol production. Previous studies have shown that expression of both GPP1 and GPP2 is induced under hyperosmotic stress and that induction partially depends on the HOG (high osmolarity glycerol) pathway. We here show that expression of GPP1 is strongly decreased in strains having low protein kinase A activity, although it is still responsive to osmotic stress. The gpp1⌬/gpp2⌬ double mutant is hypersensitive to high osmolarity, whereas the single mutants remain unaffected, indicating GPP1 and GPP2 substitute well for each other. Transfer to anaerobic conditions does not affect expression of GPP2, whereas GPP1 is transiently induced, and mutants lacking GPP1 show poor anaerobic growth. All gpp mutants show increased levels of glycerol 3-phosphate, which is especially pronounced when gpp1⌬ and gpp1⌬/ gpp2⌬ mutants are transferred to anaerobic conditions. The addition of acetaldehyde, a strong oxidizer of NADH, leads to decreased glycerol 3-phosphate levels and restored anaerobic growth of the gpp1⌬/gpp2⌬ mutant, indicating that the anaerobic accumulation of NADH causes glycerol 3-phosphate to reach growth-inhibiting levels. We also found the gpp1⌬/gpp2⌬ mutant is hypersensitive to the superoxide anion generator, paraquat. Consistent with a role for glycerol 3-phosphatase in protection against oxidative stress, expression of GPP2 is induced in the presence of paraquat. This induction was only marginally affected by the general stress-response transcriptional factors Msn2p/4p or protein kinase A activity. We conclude that glycerol metabolism plays multiple roles in yeast adaptation to altered growth conditions, explaining the complex regulation of glycerol biosynthesis genes.
Osmoregulatory mutants of Saccharomyces cerevisiae with a defect in their capacity to readjust the cell volume/buoyant density after osmotically induced dehydration were enriched by density gradient centrifugation. Colonies derived from cells that remained dense after dehydration were screened for sensitivity to high concentrations of NaCl and defects in their osmotically induced production and intracellular accumulation of glycerol. The isolated osg (osmosensitive glycerol defective) mutants were recessive in heterozygous diploids and fell into four complementation groups (osg1-osg4). The osg1-1 mutant, described in this work, is unable to grow at low water potential and shows a decreased capacity for glycerol production and a strongly reduced activity of NAD(+)-dependent sn-glycerol 3-phosphate dehydrogenase (GPD), an enzyme in the glycerol-producing pathway. Complementation of the osg1-1 salt sensitivity defect with a low copy yeast genomic library led to the cloning of GPD1, encoding an S. cerevisiae GPD consisting of 391 amino acids and sharing 47-50% identity with GPD from other sources. Micro-sequencing of the N-terminus of purified S. cerevisiae GPD revealed a 20-amino-acid sequence that was identical to a nucleotide-deduced amino acid sequence in GPD1, but indicated that the enzyme is produced with an N-terminal extension that is removed from the functional enzyme. Subcellular fractionation does not indicate, however, that the putative pre-sequence targets GPD to any organelle; the enzyme appears to be located in the cytoplasm. Chromoblot and tetrad analysis were used to position the GPD1 gene to chromosome IV, with a distance of about 18 cM from trp1.
We have cloned and characterized a homologue of the previously isolated GPD1 gene, encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae. This second gene, called GPD2, encodes a protein of 384 amino acids that shares 69% sequence identity with GPD1. Like GPD1 it has an amino-terminal extension of unknown function. GPD2 is located on chromosome VII and cross-hybridizes with GPD1 at chromosome IV as well as with an unknown homologue at chromosome XV. Disruption of the GPD2 gene did not reveal any observable phenotypic effects, whereas overexpression resulted in a slight, but significant, increase of GPD enzyme activity in wild-type cells. Analysis of gene transcription by a CAT-reporter gene fused to the GPD promoters revealed decreased transcriptional activity of the GPD2 promoter in cells grown on nonfermentable as opposed to fermentable carbon sources, and no induction in cells exposed to high osmolarity or heat shock. Similar analysis of GPD1 demonstrated an 8-17-fold higher basal level of transcription compared to GPD2. Furthermore, such analysis revealed that the GPD1 promoter was induced by increased osmolarity essentially independent of the type of stress solute used, the level of GPD1 transcription being increased about sevenfold in cells growing at 1.4 M NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.