The ability of Acanthamoeba to feed on Gram-negative bacteria, as well as to harbour potential pathogens, such as Legionella pneumophila, Coxiella burnetii, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes and Mycobacterium avium, suggest that both amoebae and bacteria are involved in complex interactions, which may play important roles in the environment and in human health. In this study, Acanthamoeba castellanii (a keratitis isolate belonging to the T4 genotype) was used and its interactions with Escherichia coli (strain K1, a cerebrospinal fluid isolate from a meningitis patient, O18 : K1 : H7, and a K-12 laboratory strain, HB101) were studied. The invasive K1 isolate exhibited a significantly higher association with A. castellanii than the non-invasive K-12 isolate. Similarly, K1 showed significantly increased invasion and/or uptake by A. castellanii in gentamicin protection assays than the non-invasive K-12. Using several mutants derived from K1, it was observed that outer-membrane protein A (OmpA) and LPS were crucial bacterial determinants responsible for E. coli K1 interactions with A. castellanii. Once inside the cell, E. coli K1 remained viable and multiplied within A. castellanii, while E. coli K-12 was killed. Again, OmpA and LPS were crucial for E. coli K1 intracellular survival in A. castellanii. In conclusion, these findings suggest that E. coli K1 interactions with A. castellanii are carefully regulated by the virulence of E. coli.
Proteases are significant determinants of protozoan pathogenicity and cytolysis of host cells. However, there is now growing evidence of their involvement in cellular differentiation. Acanthamoeba castellanii of the T4 genotype elaborates a number of proteases, which are inhibited by the serine protease inhibitor phenylmethylsulphonyl fluoride. Using this and other selective protease inhibitors, in tandem with siRNA primers, specific to the catalytic site of Acanthamoeba serine proteases, we demonstrate that serine protease activity is crucial for the differentiation of A. castellanii. Furthermore, both encystment and excystment of A. castellanii was found to be dependent on serine protease function.
Using fluorescein isothiocyanate (FITC)-labelled Escherichia coli, phagocytosis in Acanthamoeba is studied. This assay is based on the quenching effect of trypan blue on FITC-labelled E. coli. Only intracellular E. coli retain their fluorescence, which are easily discriminated from non-fluorescent adherent bacteria. Acanthamoeba uptake of E. coli is significantly reduced in the presence of genistein, a protein tyrosine kinase inhibitor. In contrast, sodium orthovanadate (protein tyrosine phosphatase inhibitor) increases bacterial uptake by Acanthamoeba. Treatment of Acanthamoeba with cytochalasin D (actin polymerization inhibitor) abolished the ability of Acanthamoeba to phagocytose E. coli suggesting that tyrosine kinase-mediated signaling may play a role in Acanthamoeba phagocytosis. In addition, we showed that phosphatidylinositol 3-kinase (PI3K) plays an important role in Acanthamoeba uptake of E. coli. Role of mannose-binding protein in Acanthamoeba phagocytosis is discussed further.
Acanthamoeba is an opportunistic protozoan pathogen that can cause blinding keratitis as well as fatal granulomatous encephalitis. One of the distressing aspects in combating Acanthamoeba infections is the prolonged and problematic treatment. For example, current treatment against Acanthamoeba keratitis requires early diagnosis followed by hourly topical application of a mixture of drugs that can last up to a year. The aggressive and prolonged management is due to the ability of Acanthamoeba to rapidly adapt to harsh conditions and switch phenotypes into a resistant cyst form. One possibility of improving the treatment of Acanthamoeba infections is to inhibit the ability of these parasites to switch into the cyst form. The cyst wall is partially made of cellulose. Here, we tested whether a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), can enhance the effects of the antiamoebic drug pentamidine isethionate (PMD). Our findings revealed that DCB can block Acanthamoeba encystment and may improve the antiamoebic effects of PMD. Using in vitro assays, the findings revealed that DCB enhanced the inhibitory effects of PMD on Acanthamoeba binding to and cytotoxicity of the host cells, suggesting the cellulose biosynthesis pathway as a novel target for the improved treatment of Acanthamoeba infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.