Perangkat lunak yang bermutu ditentukan oleh jumlah cacat yang ditemukan pada saat proses pengujian. Proses perbaikan perangkat lunak setelah terdistribusi memiliki resiko yang lebih tinggi. Beberapa metode telah diujikan untuk memprediksi cacat pada perangkat lunak. Secara umum dataset software metrics telah digunakan sebagai acuan. Dataset software metrics bersifat tidak seimbang sehingga berpengaruh terhadap tingkat akurasi pemrediksi cacat perangkat lunak. Pada tahapan pra pemrosesan, digunakan metode Particle Swarm optimization (PSO) untuk mengatasi masalah polusi data serta metode Random Over Sampling (ROS) untuk menangani ketidak seimbangan kelas pada dataset. Metode yang diusulkan pada penelitian ini yaitu algoritma decision tree J48 yang dioptimalkan dengan teknik adaboost. Dataset software metrics yang digunakan pada penelitian ini bersumber pada dataset PROMISE repository. Hasil penelitian menunjukan bahwa penggunaan teknik adaboost pada algoritma decision tree J48 layak digunakan sebagai metode untuk memprediksi cacat pada perangkat lunak dengan nilai akurasi mencapai 93,507% dan nilai AUC mencapai 0,935
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.