MHC class I molecules present host- and pathogen-derived peptides for immune surveillance. Much attention is given to the search for viral and tumor nonself peptide epitopes, yet the question remains, “What is self?” Analyses of Edman motifs and of small sets of individual peptides suggest that the class I self repertoire consists of thousands of different peptides. However, there exists no systematic characterization of this self-peptide backdrop, causing the definition of class I-presented self to remain largely hypothetical. To better understand the breadth and nature of self proteins sampled by class I HLA, we sequenced >200 endogenously loaded HLA-B*1801 peptides from a human B cell line. Peptide-source proteins, ranging from actin-related protein 6 to zinc finger protein 147, possessed an assortment of biological and molecular functions. Major categories included binding proteins, catalytic proteins, and proteins involved in cell metabolism, growth, and maintenance. Genetically, peptides encoded by all chromosomes were presented. Statistical comparison of proteins presented by class I vs the human proteome provides empiric evidence that the range of proteins sampled by class I is relatively unbiased, with the exception of RNA-binding proteins that are over-represented in the class I peptide repertoire. These data show that, in this cell line, class I-presented self peptides represent a comprehensive and balanced summary of the proteomic content of the cell. Importantly, virus- and tumor-induced changes in virtually any cellular compartment or to any chromosome can be expected to be presented by class I molecules for immune recognition.
Background Abacavir drug hypersensitivity in HIV-treated patients is associated with HLA-B*57:01 expression. To understand the immunochemistry of abacavir drug reactions, we investigated the effects of abacavir on HLA-B*57:01 epitope-binding in vitro and the quality and quantity of self-peptides presented by HLA-B*57:01 from abacavir-treated cells. Design and methods An HLA-B*57:01-specific epitope-binding assay was developed to test for effects of abacavir, didanosine or flucloxacillin on self-peptide binding. To examine whether abacavir alters the peptide repertoire in HLA-B*57:01, a B-cell line secreting soluble human leucocyte antigen (sHLA) was cultured in the presence or absence of abacavir, peptides were eluted from purified human leucocyte antigen (HLA), and the peptide epitopes comparatively mapped by mass spectroscopy to identify drug-unique peptides. Results Abacavir, but not didansosine or flucloxacillin, enhanced binding of the FITC-labeled self-peptide LF9 to HLA-B*57:01 in a dose-dependent manner. Endogenous peptides isolated from abacavir-treated HLA-B*57:01 B cells showed amino acid sequence differences compared with peptides from untreated cells. Novel drug-induced peptides lacked typical carboxyl (C) terminal amino acids characteristic of the HLA-B*57:01 peptide motif and instead contained predominantly isoleucine or leucine residues. Drug-induced peptides bind to soluble HLA-B*57:01 with high affinity that was not altered by abacavir addition. Conclusion Our results support a model of drug-induced autoimmunity in which abacavir alters the quantity and quality of self-peptide loading into HLA-B*57:01. Drug-induced loading of novel self-peptides into HLA, possibly by abacavir either altering the binding cleft or modifying the peptide-loading complex, generates an array of neo-antigen peptides that drive polyclonal T-cell autoimmune responses and multiorgan systemic toxicity.
Class I MHC molecules bind intracellular peptides for presentation to cytotoxic T lymphocytes. Identification of peptides presented by class I molecules during infection is therefore a priority for detecting and targeting intracellular pathogens. To understand which host-encoded peptides distinguish HIV-infected cells, we have developed a mass spectrometric approach to characterize HLA-B*0702 peptides unique to or up-regulated on infected T cells. In this study, we identify 15 host proteins that are differentially presented on infected human T cells. Peptides with increased expression on HIV-infected cells were derived from multiple categories of cellular proteins including RNA binding proteins and cell cycle regulatory proteins. Therefore, comprehensive analysis of the B*0702 peptide repertoire demonstrates that marked differences in host protein presentation occur after HIV infection.
Several aminotransferases with kynurenine aminotransferase (KAT) activity are able to convert L-kynurenine into kynurenic acid, a putative endogenous modulator of glutamatergic neurotransmission. In the rat, one of the described KAT isoforms has been found to correspond to glutamine transaminase K. In addition, rat kidney ␣-aminoadipate aminotransferase (AadAT) also shows KAT activity. In this report, we describe the isolation of a cDNA clone encoding the soluble form of this aminotransferase isoenzyme from rat (KAT/AadAT). Degenerate oligonucleotides were designed from the amino acid sequences of rat kidney KAT/AadAT tryptic peptides for use as primers for reverse transcriptionpolymerase chain reaction of rat kidney RNA. The resulting polymerase chain reaction fragment was used to screen a rat kidney cDNA library and to isolate a cDNA clone encoding KAT/AadAT. Analysis of the combined DNA sequences indicated the presence of a single 1275-base pair open reading frame coding for a soluble protein of 425 amino acid residues. KAT/AadAT appears to be structurally homologous to aspartate aminotransferase in the pyridoxal 5-phosphate binding domain. RNA blot analysis of rat tissues, including brain, revealed a single species of KAT/AadAT mRNA of ϳ2.1 kilobases. HEK-293 cells transfected with the KAT/AadAT cDNA exhibited both KAT and AadAT activities with enzymatic properties similar to those reported for the rat native protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.