Oligo(ethylene glycol) (O-EG(n))-terminated alkanethiol surface-assembled monolayers (SAMs) have been reported to demonstrate protein-resistant properties similar to those of poly(ethylene glycol) (PEG). In this study, we compared the relative protein resistance of short and long ethylene oxide chains, SAMs of PEG 5000, PEG 2000, O-EG(3) (molecular weight = 120), and O-EG(6) (molecular weight = 240), on gold surfaces. Surface plasmon resonance showed that these monolayers were all protein-resistant within the uncertainty of the measurement. However, they exhibited different adhesive properties toward 3T3 mouse fibroblast adhesion in supplemented Dulbecco's modified Eagles medium. The results show that the cell adhesion was sensitive to the concentration of proteins supplemented in the culture medium and to the length of PEG chains.
This paper explores the effects of the surface density and concentration profiles of extra cellular matrix proteins on the migration of rat intestinal IEC-6 cells. Microfluidic devices were used to create linear, immobilized gradients of laminin. This study investigated both the impact of the steepness and local concentrations on the directedness of cell migration. The bulk concentrations of proteins in the feed streams in the mixing device determined the gradient profile and the local concentration of laminin in the device. Two sets of gradients were used to explore cell migration directedness: (i) gradients with similar change in local concentration, i.e., the same gradient steepness, and (ii) different gradients with similar local concentrations. Cells migrated up the gradients, independent of the steepness of the gradients used in this study. At the same local laminin concentration, the migration rate was independent of the gradient steepness. However, cell directedness decreased significantly at high laminin densities.
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.
This work describes the use of microfluidic tools to generate covalently immobilized counter gradients of extracellular matrix (ECM) proteins laminin and collagen I. Using these platforms, we demonstrate control of the expression levels of two proteins linked to cell cycle progression by virtue of the spatial location of cells on the gradients, and hence by the local ECM environments in these devices. In contrast to physisorbed gradients, covalently immobilized protein patterns preserved the gradient fidelity, making long term cell studies feasible. This method of precisely controlling local cell environments is simple and broadly portable to other cell types and to other ECM proteins or soluble factors. Our approach promises to enable new investigations in cell biology that will contribute to the establishment of biological design rules for controlling cell growth, differentiation, and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.