The battery systems of electrified vehicles are characterized by increasing weight due to larger battery modules. A lightweight battery carrier structure can reduce the system weight by replacing heavy metallic housing components with materials such as fiber-reinforced plastics (FRP) and aluminum. The battery housing must meet several requirements, e.g. stiffness, crash and intrusion protection and thermal management.
Today’s battery housings are manufactured using die-cast or extrusion parts and are actively cooled. A novel approach is a lightweight hybrid battery housing consisting of a thermoformed FRP as a stiff outer shell and an integrated closed-cell aluminum foam infiltrated with phase change material (PCM) for passive thermal management. This multi-material structure enables the substitution of functionally separated systems in one intelligent solution.
In the Open Hybrid LabFactory an entire process chain was established, including the aluminum foaming process, the thermoforming of FRP with heating and consolidating as well as the integrated forming and joining process of FRP with aluminum foam.
With the goal of application-oriented research, a battery housing of an existing electric car was used to define requirements such as design space and mechanical specifications. Based on parameter studies an optimized process design was achieved, which is described in this paper.
The work presented focuses on a material efficient, modular design of a battery module for vehicle applications. Furthermore, the possibility of disassembly of individual components was considered. The constructive design focused on the combination of cast aluminum components, lightweight composites panels, and aluminum-foam phase-change material (PCM) composites. This led to an innovative battery module, which was finally implemented on a demonstrator level. The required cooling power of the module could be reduced by approx. 20% compared to conventional battery module setups. Furthermore, the constructive design of the module and the use of a “debonding-on-demand” technology enabled significantly faster disassembly. Die to the combination of these advantages and the possibility to give individual parts of the module a second life for new modules, the module shows a high resource efficiency as well as high CO2 savings potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.