In the present paper we consider the problem of estimating a periodic (r + 1)dimensional function f based on observations from its noisy convolution. We construct a wavelet estimator of f , derive minimax lower bounds for the L 2 -risk when f belongs to a Besov ball of mixed smoothness and demonstrate that the wavelet estimator is adaptive and asymptotically near-optimal within a logarithmic factor, in a wide range of Besov balls. We prove in particular that choosing this type of mixed smoothness leads to rates of convergence which are free of the "curse of dimensionality" and, hence, are higher than usual convergence rates when r is large.The problem studied in the paper is motivated by seismic inversion which can be reduced to solution of noisy two-dimensional convolution equations that allow to draw inference on underground layer structures along the chosen profiles. The common practice in seismology is to recover layer structures separately for each profile and then to combine the derived estimates into a two-dimensional function. By studying the two-dimensional version of the model, we demonstrate that this strategy usually leads to estimators which are less accurate than the ones obtained as two-dimensional functional deconvolutions. Indeed, we show that unless the function f is very smooth in the direction of the profiles, very spatially inhomogeneous along the other direction and the number of profiles is very limited, the functional deconvolution solution has a much better precision compared to a combination of M solutions of separate convolution equations. A limited simulation study in the case of r = 1 confirms theoretical claims of the paper.
We consider the problem of estimating the unknown response function in the multichannel deconvolution model with long-range dependent Gaussian errors. We do not limit our consideration to a specific type of long-range dependence rather we assume that the errors should satisfy a general assumption in terms of the smallest and larger eigenvalues of their covariance matrices. We derive minimax lower bounds for the quadratic risk in the proposed multichannel deconvolution model when the response function is assumed to belong to a Besov ball and the blurring function is assumed to possess some smoothness properties, including both regular-smooth and super-smooth convolutions. Furthermore, we propose an adaptive wavelet estimator of the response function that is asymptotically optimal (in the minimax sense), or near-optimal within a logarithmic factor, in a wide range of Besov balls. It is shown that the optimal convergence rates depend on the balance between the smoothness parameter of the response function, the kernel parameters of the blurring function, the long memory parameters of the errors, and how the total number of observations is distributed among the total number of channels. Some examples of inverse problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation are used to illustrate the application of the theory we developed. The optimal convergence rates and the adaptive estimators we consider extend the ones studied by Sapatinas (2009, 2010) for independent and identically distributed Gaussian errors to the case of long-range dependent Gaussian errors.
In the present paper we consider the problem of estimating a three-dimensional function f based on observations from its noisy Laplace convolution. Our study is motivated by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. We construct an adaptive wavelet-Laguerre estimator of f , derive minimax lower bounds for the L 2 -risk when f belongs to a three-dimensional Laguerre-Sobolev ball and demonstrate that the wavelet-Laguerre estimator is adaptive and asymptotically near-optimal in a wide range of Laguerre-Sobolev spaces. We carry out a limited simulations study and show that the estimator performs well in a finite sample setting. Finally, we use the technique for the solution of the Laplace deconvolution problem on the basis of DCE Computerized Tomography data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.