Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Deep eutectic solvents (DESs) have upgraded the practices of valorizing lignocellulosic feedstock by lessening biomass recalcitrance through delignification in precise and economical manner. In this study, the influence of a series of deep eutectic mixtures was evaluated on the halophyte Atriplex crassifolia for achieving elevated biogas production. Initially, the biomass was pretreated via several DESs with varying hydrogen bond donors (HBDs) including carboxylic acids, amine/amide, and polyols/glycols. DES composed of choline chloride (ChCl) and lactic acid (LA) evidenced as the most effective solvent in achieving high lignin removal rates and was further optimized by evaluating the parameters of molar ratio of DES components, solid-to-liquid ratio, and solvent addition. A maximum delignification value of 89.5% was achieved by 15% diluted ChCl: LA (1:2) DES at a biomass loading of 1:15. The solubilization rate of diluted ChCl: LA was also raised up to 38%. FT-IR analysis revealed significant lignin elimination from ChCl: LA pretreated substrates. Moreover, ≥88% of ChCl: LA DES was recovered after up to three pretreatment cycles, retaining ≥85% delignification efficiency. Fresh DES-pretreated Atriplex crassifolia recorded 32.2 mL/g of biogas production yield due to increased cellulosic content. The findings validated Atriplex crassifolia as an efficient feedstock for biogas production and confirmed the affectivity of ChCl: LA pretreatment in eliminating the lignin barrier, ultimately making cellulosic sugars readily biodegradable and highly accessible for anaerobic microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.