The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult. This phenomenon is mainly caused by exothermic heat reactions. The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes. In this work, another solution is proposed to simulate the curing process for thick composites, namely preheating the resin to activate the curing reaction before resin injection into the mold. A good agreement between the experiment and the simulation is found. Moreover, in order to minimize the thermal gradient in the final composite, the thermophysical properties of the fiber and the torque (temperature, time) of the Plate have been varied leading to interesting results.
The successful manufacture of thick composites is challenging, since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult. This phenomenon is mainly caused by exothermic heat reactions. The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes. In this work, another solution is proposed to simulate the curing process for thick composites, namely preheating the resin to activate the curing reaction before resin injection into the mold. A good agreement between the experiment and the simulation is found. Moreover, in order to minimize the thermal gradient in the final composite, the thermophysical properties of the fiber and the torque (temperature, time) of the Plate have been varied leading to interesting results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.