A temporal rainfall analysis was carried out for the study area, Rajahmundry city located in lower Godavari basin, India, during the period 1960–2013. Both the parametric and non-parametric approaches were envisaged for identifying the trends at different temporal scales. Linear and robust regression analysis revealed a negative trend at weekly scale during monsoon months, but failed to signify the slope at 95% confidence level. The magnitude of Sen's slope was observed to be negative during the months of April–September. Results of the Mann–Kendall test ascertained the negative rainfall trends during the monsoon months of June and July with a significant trend at 95% confidence interval. Application of robust statistics for long-term rainfall analysis helped to address the outlier's problem in the dataset. The Mann–Kendall test rejected the null hypothesis for all months except February–May and August after exclusion of outliers. Overall, a negative trend during monsoon season and a positive trend during post-monsoon season were observed using a robust non-parametric approach. Further, good correlation was found between the total rainfall and rainy days during the study period. On average, 21.25% days of a year is considered as rainy, while heavy and extreme rainfall in this region together occupies nearly 15% of the rainy days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.