<p><span>In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.</span></p>
<p><span>Channel coding for the fifth generation (5G) mobile communication is currently facing new challenges as it needs to uphold diverse emerging applications and scenarios. Massive machine-type communication (mMTC) constitute one of the main usage scenarios in 5G systems, which promise to provide low data rate services to a large number of low power and low complexity devices. Research on efficient coding schemes for such use case is still ongoing and no decision has been made yet. Therefore, This paper compares the performance of different coding schemes, namely: tail-biting convolutional code (TBCC), low density parity check codes (LDPC), Turbo code and Polar codes, in order to select the appropriate channel coding technique for 5G-mMTC scenario. The considered codes are evaluated in terms of bit error rate (BER) and block error rate (BLER) for short information block lengths (K ≤ 256). We further investigate their Algorithmic complexity in terms of the number of basic operations. The Simulation results indicate that polar code with CRC-aided successive cancelation list decoder has better performance compared with other coding schemes for 5G-mMTC scenario.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.