Let G(V, E) be a connected and simple graphs with vertex set V and edge set E. Define a coloring c : E(G) → {1, 2, 3, …, k}, k ∈ N as the edges of G, where adjacent edges may be colored the same. If there are no two edges of path P are colored the same then a path P is a rainbow path. The graph G is rainbow connected if every two vertices in G has a rainbow path. A graph G is called antimagic if the vertex sum (i.e., sum of the labels assigned to edges incident to a vertex) has a different color. Since the vertex sum induce a coloring of their edges and there always exists a rainbow path between every pair of two vertices, we have a rainbow antimagic coloring. The rainbow antimagic connection number, denoted by rcA
(G) is the smallest number of colors that are needed in order to make G rainbow connected under the assignment of vertex sum for every edge. We have found the exact value of the rainbow antimagic connection number of ladder graph, triangular ladder, and diamond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.