AbstrakSMK merupakan salah satu intrumen penting dalam pengembangan Sumber Daya Manusia (SDM) di Indonesia pada umumnya dan di Jawa Tengah pada khususnya. Belum adanya pengelompokan SMK berdasarkan data pokok kemendikbud di jawa tengah merupakan sebuah peluang untuk mengembangkan arah revitalisasi SMK menjadi lebih baik dan jelas. X-means merupakan salah satu metode clustering yang dikembangkan dari metode clustering yang cukup popular, yaitu K-means. Penelitian ini menggunakan data pokok kemendikbud untuk menghitung pembagian cluster terbaik dengan menggunakan metode X-means dengan membandingkan nilai Davis Buldin Index (DBI) X-means dengan nilai DBI K-means pada variasi ukuran cluster mulai dari empat, enam, delapan dan sepuluh cluster. Hasil penelitian ini menunjukkan bahwa secara konsisten nilai DBI terbaik ada pada ukuran cluster empat, baik menggunakan X-means ampun K-means dengan nilai DBI X-means sebesar 0,933 dan nilai DBI Kmeans sebesar 0,914, sedangkan nilai DBI paling besar juga konsisten pada ukuran cluster 10, sebesar 1,439 pada X-means dan 1,322 pada K-means. Berdasrkan hasil tersebut maka SMK di Jawa Tengah dapat dibagi ke dalam 4 kelompok yaitu kurang, cukup, baik, dan unggul. AbstractVocational School is one of the important instruments in the development of Human Resources (HR) in Indonesia in general and in Central Java in particular. The absence of vocational grouping based on basic data from the Ministry of Education and Culture of Indonesia in Central Java is an opportunity to develop a better and clearer direction of revitalizationof Vocational School. X-means is one of the clustering methods developed from a quite famous clustering method, namely K-means. This study uses the Ministry of Education and Culture's basic data to calculate the best cluster distribution using the X-means method by comparing the Davis Buldin Index (DBI) Xmeans value with K-means DBI values on variations in cluster sizes ranging from four, six, eight and ten clusters. The results of this study indicate that consistently the best DBI values exist in cluster four, both using X-means or K-means with X-means DBI values of 0.933 and K-means DBI values of 0.914, while the highest DBI values are also consistent with cluster 10 size, 1,439 for X-means and 1,322 for K-means. Based on these results, Vocational Schools in Central Java can be divided into 4 groups, namely less, sufficient, good, and superior.
The cadaveric study supports the view that computer-assisted pedicle screw fixation using the newly developed software is superior to the conventional fluoroscopic method, especially with regard to the thoracic spine, where a higher degree of accuracy is needed. Further clinical studies are planned and the software needs further refinement for complex clinical situations.
Banyaknya jumlah sekolah menengah atas (SMA) di Jawa Tengah dengan mutu pendidikan yang berbeda-beda menjadi kendala bagi stakeholder dalam mengambil kebijakan. Untuk mengatasinya, dibutuhkan metode dalam menganalisis data sekolahan yang berkaitan dengan mutu pendidikan. Salah satu metode yang dapat digunakan adalah penggerombolan. Pada penelitian ini diterapkan metode penggerombolan dengan algoritme K-means serta kombinasi K-means dan Hirarki pada nilai ujian akhir nasional (UAN) program ilmu alam. Nilai UAN merupakan salah satu komponen penilaian mutu pendidikan. Penentuan banyak gerombol optimal digunakan Bayesian Information Criterion (BIC) dan diperoleh 5 gerombol optimal dengan BIC 221.45. Hasil penggerombolan terbaik berdasarkan nilai Silhouette diperoleh algoritme complete K-means dengan nilai 0.4537, sehingga hasil tersebut digunakan untuk menganalisis mutu pendidikan di Jawa Tengah. Berdasarkan hasil penggerombolan, diperoleh kesimpulan bahwa sekolah yang unggul banyak terdapat di kota Semarang dengan proporsi 12.76% dari seluruh sekolah unggul pada 35 wilayah di Jawa Tengah. Sedangkan sekolah terbanyak pada peringkat terendah di Boyolali dengan proporsi 9.03% dari seluruh sekolah peringkat terakhir pada 35 wilayah di Jawa Tengah. Lima wilayah yang perbedaan mutunya tidak merata ialah Banjarnegara, Demak, Kab. Pekalongan, Batang, dan Purwodadi. Sedangkan lima wilayah yang perbedaan mutunya paling merata adalah Wonosobo, Tegal, Semarang, dan Magelang.
Decision making about microteaching for lecturers in ITTP with the low teaching quality is only based on three lowest order from teaching values. Consequently, the decision is imprecise, because there is possibility that the lecturers are not three. To get the precise quantity, an analysis is needed to classify the lecturers based on their teaching values. Clustering is one of analyses that can be solution where the popular clustering algorithm is k-means. In the first step, the initial centroids are needed for k-means where they are often randomly determined. To get them, this paper would utilize some preprocessing, namely Silhouette Density Canopy (SDC), Density Canopy (DC), Silhouette (S), Elbow (E), and Bayesian Information Criterion (BIC). Then, the clustering results by using those preprocessing were compared to obtain the optimal clustering. The comparison showed that the optimal clustering had been given by k-means using Elbow where obtain four clusters and 0.6772 Silhouette index value in dataset used. The other results showed that k-means using Elbow was better than k-means without preprocessing where the odds were 0.75. Interpretation of the optimal clustering is that there are three lecturers with the lower teaching values, namely N16, N25, and N84.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.