Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose coronavirus disease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT-qPCR testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding infectious SARS-CoV-2.
A number of preclinical studies have indicated the therapeutic potential of endothelial progenitor cells for vascular regeneration in ischemic diseases. A phase I/IIa clinical trial of transplantation of autologous CD34+ cells, the endothelial and hematopoietic progenitor‐enriched fraction, was performed in no‐option patients with atherosclerotic peripheral artery disease or Buerger's disease with critical limb ischemia (CLI). CD34+ cells were isolated from the G‐CSF‐mobilized apheresis product using a magnetic cell sorting system. CD34+ cells (105/kg, n = 6; 5 × 105/kg, n = 8; or 106/kg, n = 3) were injected i.m. into the leg with more severe ischemia. The Efficacy Score, representing changes in the toe brachial pressure index (TBPI), Wong‐Baker FACES pain rating scale, and total walking distance 12 weeks after cell transplantation, the primary endpoint, was positive, indicating improvement in limb ischemia in all patients, although no significant dose‐response relationship was observed. During the 12‐week observation after cell therapy, the Wong‐Baker FACES pain rating scale, TBPI, transcutaneous partial oxygen pressure, total or pain‐free walking distance, and ulcer size serially improved in all patients. No death or major amputation occurred, and severe adverse events were rare, although mild to moderate events relating to G‐CSF and leukapheresis were frequent during the 12‐week follow‐up. In conclusion, the outcomes of this prospective clinical study indicate the safety and feasibility of CD34+ cell therapy in patients with CLI. Favorable trends in efficacy parameters encourage a randomized and controlled trial in the future. STEM CELLS 2009;27:2857–2864
Interpretation: Although the number of patients is limited, our results show that the antibody response against the first SARS-CoV-2 infection in symptomatic patients is typical of that observed in an acute viral infection.
Limited knowledge exists on immune markers associated with disease severity or recovery in patients with coronavirus disease 2019 (COVID-19). Here, we elucidated longitudinal evolution of SARS-CoV-2 antibody repertoire in patients with acute COVID-19. Differential kinetics was observed for immunoglobulin M (IgM)/IgG/IgA epitope diversity, antibody binding, and affinity maturation in “severe” versus “mild” COVID-19 patients. IgG profile demonstrated immunodominant antigenic sequences encompassing fusion peptide and receptor binding domain (RBD) in patients with mild COVID-19 who recovered early compared with “fatal” COVID-19 patients. In patients with severe COVID-19, high-titer IgA were observed, primarily against RBD, especially in patients who succumbed to SARS-CoV-2 infection. The patients with mild COVID-19 showed marked increase in antibody affinity maturation to prefusion SARS-CoV-2 spike that associated with faster recovery from COVID-19. This study revealed antibody markers associated with disease severity and resolution of clinical disease that could inform development and evaluation of effective immune-based countermeasures against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.