Hospitalized COVID-19 patients often present with a large spectrum of clinical symptoms. There is a critical need to better understand the immune responses to SARS-CoV-2 that lead to either resolution or exacerbation of the clinical disease. Here, we examine longitudinal plasma samples from hospitalized COVID-19 patients with differential clinical outcome. We perform immune-repertoire analysis including cytokine, hACE2-receptor inhibition, neutralization titers, antibody epitope repertoire, antibody kinetics, antibody isotype and antibody affinity maturation against the SARS-CoV-2 prefusion spike protein. Fatal cases demonstrate high plasma levels of IL-6, IL-8, TNFα, and MCP-1, and sustained high percentage of IgA-binding antibodies to prefusion spike compared with non-ICU survivors. Disease resolution in non-ICU and ICU patients associates with antibody binding to the receptor binding motif and fusion peptide, and antibody affinity maturation to SARS-CoV-2 prefusion spike protein. Here, we provide insight into the immune parameters associated with clinical disease severity and disease-resolution outcome in hospitalized patients that could inform development of vaccine/therapeutics against COVID-19.
Limited knowledge exists on immune markers associated with disease severity or recovery in patients with coronavirus disease 2019 (COVID-19). Here, we elucidated longitudinal evolution of SARS-CoV-2 antibody repertoire in patients with acute COVID-19. Differential kinetics was observed for immunoglobulin M (IgM)/IgG/IgA epitope diversity, antibody binding, and affinity maturation in “severe” versus “mild” COVID-19 patients. IgG profile demonstrated immunodominant antigenic sequences encompassing fusion peptide and receptor binding domain (RBD) in patients with mild COVID-19 who recovered early compared with “fatal” COVID-19 patients. In patients with severe COVID-19, high-titer IgA were observed, primarily against RBD, especially in patients who succumbed to SARS-CoV-2 infection. The patients with mild COVID-19 showed marked increase in antibody affinity maturation to prefusion SARS-CoV-2 spike that associated with faster recovery from COVID-19. This study revealed antibody markers associated with disease severity and resolution of clinical disease that could inform development and evaluation of effective immune-based countermeasures against COVID-19.
CD4؉ T cells play a central role in orchestrating adaptive immunity. To better understand the roles of CD4 ؉ T cells in the effects of adjuvants, we investigated the efficacy of a T-dependent influenza virus split vaccine with MF59 or alum in CD4 knockout (CD4KO) and wild-type (WT) mice. CD4 ؉ T cells were required for the induction of IgG antibody responses to the split vaccine and the effects of alum adjuvant. In contrast, MF59 was found to be highly effective in raising isotype-switched IgG antibodies to a T-dependent influenza virus split vaccine in CD4KO mice or CD4-depleted WT mice equivalent to those in intact WT mice, thus overcoming the deficiency of CD4 ؉ T cells in helping B cells and inducing immunity against influenza virus. Vaccination with the MF59-adjuvanted influenza virus vaccine was able to induce protective CD8 ؉ T cells and long-lived antibody-secreting cells in CD4KO mice. The effects of MF59 adjuvant in CD4KO mice might be associated with uric acid, inflammatory cytokines, and the recruitment of multiple immune cells at the injection site, but their cellularity and phenotypes were different from those in WT mice. These findings suggest a new paradigm of CD4-independent adjuvant mechanisms, providing the rationales to improve vaccine efficacy in infants, the elderly, immunocompromised patients, as well as healthy adults.
IMPORTANCE
MF59-adjuvanted influenza vaccines were licensed for human vaccination, but the detailed mechanisms are not fully elucidated. CD4 ؉ T cells are required to induce antibody isotype switching and long-term memory responses. In contrast, we discovered that MF59 was highly effective in inducing isotype-switched IgG antibodies and long-term protective immune responses to a T-dependent influenza vaccine independent of CD4؉ T cells. These findings are highly significant for the following reasons: (i) MF59 can overcome a defect of CD4 ؉ T cells in inducing protective immunity to vaccination with a T-dependent influenza virus vaccine; (ii) a CD4-independent pathway can be an alternative mechanism for certain adjuvants such as MF59; and (iii) this study has significant implications for improving vaccine efficacies in young children, the elderly, and immunocompromised populations.
Vaccination is used to induce protective antibodies and immune memory to prevent against future pathogens. Adjuvants can play a key role in the development of successful vaccines by enhancing immunogenicity and leading to antigen dose-sparing effects, fewer immunizations, and long-lasting B and T cell immunity. Aluminum hydroxide (alum) has been the most common adjuvant used in human vaccines for Ͼ70 years. Alum may act via various mechanisms such as antigen depot, benign cell death (1), and recruitment of neutrophils and macrophages partially through inflammasome signaling pathways (2, 3). An inflammasome pathway of alum adjuvant effects is controversial due to the lack of evidence in vivo (4, 5). MF59 is an oil-in-water emulsion adjuvant licensed in 1997 and has been used in influenza v...
Current influenza vaccines do not provide broad cross-protection. Here, we report that intranasal vaccination with virus-like particles containing the highly conserved multiple ectodomains of matrix protein 2 (M2e5x VLP) of influenza virus induces broad cross-protection by M2-specific humoral and cellular immune responses. M2e5x VLP intranasal vaccination prevented severe weight loss, attenuated inflammatory cytokines and cellular infiltrates, and lowered viral loads, and induced germinal center phenotypic B and plasma cells. In addition, depletion studies demonstrate the protective roles of CD4 and CD8 T cells induced by M2e5x VLP intranasal vaccination. Thus, this study provides evidence that mucosal delivery of M2e5x VLP vaccine provides cross-protection by inducing humoral and cellular immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.