Especially in pediatric dentistry, prevention by the control of initial lesions prior to cavitation is very important, and application of a pit and fissure sealant is essential to achieve this. Numerous reports have suggested that resin-based sealants are inferior to sealants based on glass-ionomer cement (GIC), because of GIC’s many advantages, such as fluoride ion release properties and its good adhesion to tooth structures. However, the use of GIC is impeded due to its low flexural strength and fracture toughness. In this paper, we developed and characterized an apatite-ionomer cement (AIC) that incorporates hydroxyapatite (HAp) into the GIC; this development was aimed at not only reinforcing the flexural and compressive strength but also improving some functional properties for the creation of the material suitable for sealant. We examined the influence of differences in the compounding conditions of GIC powder, liquid, and HAp on flexural and compressive strengths, fracture toughness, fluoride ion release property, shear bond strength to bovine enamel, surface pH of setting cements, and acid buffer capability. These methods were aimed at elucidating the reaction mechanism of porous spherical-shaped HAp (HApS) in AIC. The following observations were deduced. (1) HAp can improve the mechanical strengths of AIC by strengthening the cement matrix. (2) The functional properties of AIC, such as acid buffer capability, improved by increasing the releasing amounts of various ions including fluoride ions. The novel AIC developed in this study is a clinically effective dental material for prevention and remineralization of tooth and initial carious lesion.
In this study, we aimed to evaluate the effect of the addition of powdery cellulose nanofibers (CNFs) on the mechanical properties of glass ionomer cement (GIC) without negatively affecting its chemical properties. Commercial GIC was reinforced with powdery CNFs (2–8 wt.%) and characterized in terms of flexural strength, compressive strength, diametral tensile strength, and fluoride-ion release properties. Powdery CNFs and samples subjected to flexural strength testing were observed via scanning electron microscopy. CNF incorporation was found to significantly improve the flexural, compressive, and diametral tensile strengths of GIC, and the corresponding composite was shown to contain fibrillar aggregates of nanofibers interspersed in the GIC matrix. No significant differences in fluoride-ion release properties were observed between the control GIC and the CNF-GIC composite. Thus, powdery CNFs were concluded to be a promising GIC reinforcement agent.
Human mesenchymal stem cells can differentiate into various cell types and are useful for applications in regenerative medicine. Previous studies indicated that dental pulp exfoliated from deciduous teeth is a valuable alternative for dental tissue engineering because it contains stem cells with a relatively high proliferation rate. For clinical application, it is necessary to rapidly obtain a sufficient number of cells in vitro and maintain their undifferentiated state; however, the abundance of stem cells in the dental pulp tissue is limited. Non-thermal atmospheric pressure plasma (NTAPP) has been applied in regenerative medicine because it activates cell proliferation. Here, we examined the effects of NTAPP to activate the proliferation of human deciduous dental pulp fibroblast-like cells (hDDPFs) in vitro. Compared with untreated cells, NTAPP increased cell proliferation by 1.3-fold, significantly upregulated well-known pluripotent genes for stemness (e.g., Oct4, Sox2, and Nanog), and activated the expression of stem cell-specific surface markers (e.g., CD105). Overall, NTAPP activated the proliferation of various mesodermal-derived human adult stem cells while maintaining their pluripotency and stemness. In conclusion, NTAPP is a potential tool to expand the population of various adult stem cells in vitro for medical applications.
The purpose of this study was to examine the anti-oral microorganism effects of fluorine and/or silver ions implanted into acrylic resin (PMMA) using plasma-based ion implantation (PBII) with argon gas. The experimental PMMA specimens were implanted with F and Ag ions alone or simultaneously by the PBII method using Ar or Ar/F2 gases and Ag mesh. The surface characteristics were evaluated by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). Moreover, the antibacterial activity against Streptococcus mutans (S. mutans) and the antifungal activity against Candida albicans (C. albicans) were examined by the adenosine-5’-triphosphate (ATP) emission luminescence method. XPS spectra of the modified specimens revealed peaks due to F in the Ar/F and the Ar/F+Ag groups, and due to Ag in the Ar+Ag and the Ar/F+Ag groups. The water contact angle increased significantly due to the implantation of Ar, F, and Ag. In the AFM observations, the surface roughness of the Ar/F and the Ar/F+Ag groups increased significantly by less than 5 nanometers. The presence of F and Ag was found to inhibit S. mutans growth in the Ar+Ag and the Ar/F+Ag groups. However, this method provided no significant antifungal activity against C. albicans.
Fissure sealants are normally composite resin or glass ionomer cement (GIC) materials. In a systematic review [2] comparing the results of eight studies of composite resin-based and GIC-based sealants, three stud
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.