Recent reports have shown that statin (HMG-CoA reductase inhibitors) may have the potential to inhibit inflammatory arthritis. More recently, the idea that chondrocyte aging is closely associated with the progression of cartilage degeneration has been promulgated. Here, we demonstrate the potential of statin as protective agents against chondrocyte aging and degeneration of articular cartilage during the progression of osteoarthritis (OA), both in vitro and in vivo. The OA-related catabolic factor, IL-1β induced marked downregulation of cellular activity, expression of a senescent biomarker, specific senescence-associated β-galactosidase activity and shortening of the cellular lifespan in chondrocytes. In contrast, treatment with statin inhibited the IL-1β-induced production of cartilage matrix degrading enzymes (metalloprotease-1 and -13) and cellular senescence in of chondrocytes in vitro. In addition, this statin accelerated the production of cartilage matrix proteoglycan in chondrocytes. The in vivo study was performed on the STR/OrtCrlj mouse, an experimental model which spontaneously develops an osteoarthritic process. In this mouse model, treatment with statin significantly reduced the degeneration of articular cartilage, while the control knee joints showed progressive cartilage degeneration over time. These findings suggest that statin may have the potential to prevent the catabolic stress-induced chondrocyte disability and aging observed in articular cartilage. Our results indicate that statin are potential therapeutic agents for protection of articular cartilage against the progression of OA.
SummaryAnti-endothelial cell antibodies (AECA) have been frequently detected in systemic vasculitis, which affects blood vessels of various sizes. To understand the pathogenic roles of AECA in systemic vasculitis, we attempted to identify target antigens for AECA comprehensively by a proteomic approach. Proteins extracted from human umbilical vein endothelial cells (HUVEC) were separated by two-dimensional electrophoresis, and Western blotting was subsequently conducted using sera from patients with systemic vasculitis. As a result, 53 autoantigenic protein spots for AECA were detected, nine of which were identified by mass spectrometry. One of the identified proteins was peroxiredoxin 2 (Prx2), an anti-oxidant enzyme. Frequency of anti-Prx2 autoantibodies, measured by enzyme-linked immunosorbent assay (ELISA), was significantly higher in systemic vasculitis (60%) compared to those in collagen diseases without clinical vasculitis (7%, P < 0·01) and healthy individuals (0%, P < 0·01). Further, the titres changed in parallel with the disease activity during time-courses. The presence of anti-Prx2 autoantibodies correlated significantly with elevation of serum d-dimers and thrombinantithrombin complex (P < 0·05). Immunocytochemical analysis revealed that live endothelial cells expressed Prx2 on their surface. Interestingly, stimulation of HUVEC with rabbit anti-Prx2 antibodies increased secretion of interleukin (IL)-6, IL-1b, IL-1ra, growth regulated oncogene (GRO)-a, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colonystimulating factor (GM-CSF), IL-8 and monocyte chemoattractant protein (MCP)-1 more than twofold compared to that of with rabbit immunoglobulin (Ig)G. Taken together, our data suggest that anti-Prx2 autoantibodies would be a useful marker for systemic vasculitis and would be involved in the inflammatory processes of systemic vasculitis.
Recently, it has been demonstrated that oxygen free radicals have an important role as a signaling messenger in the development of inflammation and osteoclastogenesis, suggesting the implication of oxygen free radicals in the pathogenesis of arthritis. The aim of this study was to examine the potential of a strong free-radical scavenger, water-soluble fullerene (C60), as a protective agent against synovitis in arthritis, both in vitro and in vivo. In the presence or absence of C60 (0.1, 1.0, 10.0 μM), human synovial fibroblasts, synovial infiltrating lymphocytes or macrophages were incubated with tumor necrosis factor-α (TNF-α) (10.0 ng/mL), and the production of proinflammatory cytokines by the individual cells were analyzed. C60 significantly suppressed the TNF-α-induced production of proinflammatory cytokines in synovial fibroblasts, synovial infiltrating lymphocytes and macrophages in vitro. Adjuvant induced arthritic rats were used as an animal model of arthritis. Rats were divided into two subgroups: control and treatment with C60 at 10.0 μM. The left ankle joint was injected intraarticularly with water-soluble C60 (20 μl) in the C60-treated group, while, as a control, the left ankle joint in the control rats received phosphate-buffered saline (20 μl), once weekly for eight weeks. Ankle joint tissues were prepared for histological analysis. In adjuvant-induced arthritic rats, intra-articular treatment with C60 in vivo reduced synovitis and alleviated bone resorption and destruction in the joints, while control ankle joints showed progression of synovitis and joint destruction with time. These findings indicate that C60 is a potential therapeutic agent for inhibition of arthritis.
Anti‐oxidative enzymes protect living bodies from various oxidative stresses. In the systemic autoimmune diseases, autoantibodies to oxidized molecules and to anti‐oxidative enzymes have been reported. To promote understanding of the relationships between autoimmunity and oxidative stress, we here investigate whether autoimmunity to the anti‐oxidative peroxiredoxin (Prxs) enzymes exists in patients with systemic autoimmune diseases. Specifically, we detected autoantibodies to recombinant Prx I and Prx IV respectively by ELISA and western blotting. Next, clinical parameters were compared between the anti‐Prx I or IV‐positive and ‐negative patients. We found that 33% of the 92 patients with autoimmune diseases tested possessed autoantibodies to Prx I (57% in systemic lupus erythematosus (SLE), 19% in rheumatoid arthritis (RA), 5% in Behçet disease, and 46% in primary vasculitis syndrome). In contrast, autoantibodies to Prx IV were detected in only 17% of the same patients. No significant correlation was found between occurrence of the two autoantibodies. Clinically, possession of anti‐Prx I autoantibodies correlated with lower serum levels of CH50, C3, and C4. Taken together, our data demonstrate the existence of autoantibodies to Prxs for the first time. The autoantibodies to Prx I may be involved in the pathophysiology of systemic autoimmune diseases such as SLE and vasculitis.
Antibodies to the anti-oxidative peroxiredoxin (Prx) enzymes occur in both systemic autoimmune disease and vasculitis in adulthood. Because increased oxidative stress induces vasculitis in Kawasaki disease (KD), autoimmunity to Prxs in patients with KD was investigated. The presence of antibodies to Prx 1, 2 and 4 was analyzed by ELISA and Western blot. Of 30 patients with KD, 13 (43.3%) possessed antibodies to Prx 2, whereas these antibodies were present in only 1 of 10 patients (10.0%) with sepsis (4 with purulent meningitis and 6 with septicemia). In contrast, antibodies to Prx 1 and 4 were not detected in either group. There was no significant correlation among the titers of the three antibodies. Clinical parameters were compared between anti-Prx 2-positive and -negative patients. The presence of anti-Prx 2 antibodies correlated with a longer period of fever and poor response to high-dose γ-globulin therapy in patients with KD. Anti-Prx 2-positive patients had significantly greater excretion of urinary 8-isoprostaglandin than did anti-Prx 2-negative patients. These results provide the first evidence for an antibody to Prx 2 in patients with KD. They also suggest that this antibody might serve as a marker of disease severity and be involved in the pathophysiology of vasculitis in some patients with KD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.