Enantioselective synthesis of a planar chiral organonitrogen cycle has been newly developed based on the unprecedented prochiral face-selective cyclization of achiral linear precursors by an appropriate chiral promoter.
Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase and a promising target for various diseases, including cancer and fibrosis. Herein, we report the discovery of a novel MMP2selective inhibitor with high chemical stability and slow tight-binding features. Based on the degradation mechanism of our small-molecule− peptide hybrid 1, the tripeptide linker {5-aminopentanoic acid [Ape(5)]−Glu−Asp} of 1 was replaced by a shorter linker (γ-D-Glu). Phenylbenzamide was suitable for the new generation of MMP2 inhibitors as an S1′ pocket-binding group. The introduction of (4S)aminoproline dramatically increased the chemical stability while maintaining high subtype selectivity because of its interaction with Glu130. TP0597850 (18) exhibited high stability over a wide range of pH values as well as potent MMP2 inhibition (K i = 0.034 nM) and ≥2000-fold selectivity determined using the inhibition constants. A kinetic analysis revealed that it possesses slow tight-binding nature with a long MMP2 dissociative half-life (t 1/2 = 265 min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.