Pulmonary fibrosis in humans can occur as a result of a large number of conditions. In idiopathic pulmonary fibrosis (IPF), pulmonary function becomes progressively compromised resulting in a high mortality rate. Currently there are no proven effective treatments for IPF. We have recently reported that IL-6 and TGF-β1 plays an important role in proliferation and differentiation of lung fibroblasts, and all-trans-retinoic acid (ATRA) prevented bleomycin-induced lung fibrosis through the inhibition of these cytokines. Thalidomide (Thal) has been used in the treatment of multiple myeloma through the inhibitory effect on IL-6-dependent cell growth and angiogenesis. In this study, we examined the preventive effect of Thal on bleomycin-induced pulmonary fibrosis in mice. We performed histological examinations and quantitative measurements of IL-6, TGF-β1, collagen type Iα1 (COL1A1), vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) in bleomycin-treated mouse lung tissues with or without the administration of Thal. Thal histologically ameliorated bleomycin-induced fibrosis in mouse lung tissues. Thal decreased the expressions of IL-6, TGF-β1, VEGF, Ang-1 Ang-2, and COL1A1 mRNA in mouse lung tissues. In addition, Thal inhibited angiogenesis in the lung. In vitro studies disclosed that Thal reduced 1) production of IL-6, TGF-β1, VEGF, Ang-1, and collagen synthesis from human lung fibroblasts, and 2) both IL-6-dependent proliferation and TGF-β1-dependent transdifferentiation of the cells, which could be the mechanism underlying the preventive effect of Thal on pulmonary fibrosis. These data may provide a rationale to explore clinical use of Thal for the prevention of pulmonary fibrosis.
Although high-dose thoracic radiotherapy is an effective strategy for some malignancies including lung cancers and malignant lymphomas, it often causes complications of radiation fibrosis. To study the mechanism initiating tissue fibrosis, we investigated irradiation-induced cytokine production from human lung fibroblastic cells and found that IL-6 production was stimulated by irradiation. IL-6 is an autocrine growth factor for human myeloma cells, and retinoic acid is reported to inhibit their growth. Thus we evaluated the effect of all- trans retinoic acid (ATRA) on cell proliferation of lung fibroblasts along with the cytokine/receptor system. Irradiation-dependent stimulation of IL-6 production was correlated with increased NF-κB activity, and ATRA reduced this effect. Irradiation also increased the levels of mRNA for IL-6R and gp130, which were blocked by coexisting ATRA. Furthermore, IL-6 stimulated cell proliferation in dose-dependent manner but was overcome by pharmacological concentration of ATRA. These effects of ATRA were inhibited by rottlerin, which suggests ATRA abolished irradiation-induced stimulation through a PKCδ-dependent pathway. Finally, we demonstrated that IL-6 transcripts in the lung were upregulated at 2 mo after irradiation, and the effect was inhibited by the intraperitoneal administration of ATRA. ATRA is expected to have an advantage for radiotherapy in its antitumor effects, as reported previously, and to prevent radiotherapy-induced pulmonary injury.
These data may provide a rationale to explore clinical use of ATRA for the prevention of radiation-induced lung fibrosis and other pathologic conditions involving pulmonary fibrosis.
BackgroundMalignant pleural mesothelioma (MPM) is an aggressive malignant tumor of mesothelial origin that shows a limited response to conventional chemotherapy and radiotherapy. Therefore, diagnosing MPM early is very important. Some researchers have previously reported that high-mobility group box 1 (HMGB1) was correlated with pulmonary fibrosis. MPM involves the malignant transformation of mesothelial cells, which originate from mesenchymal cells similar to lung fibroblasts. Here, we investigated serum levels of HMGB1 in patients with MPM and compared them with those of a population that had been exposed to asbestos without developing MPM.MethodsHMGB1 production from MPM cell lines was measured using ELISA. Serum HMGB1 levels were also examined in 61 MPM patients and 45 individuals with benign asbestos-related diseases.ResultsHMGB1 concentrations of 2 out of 4 MPM cell lines were higher than that of normal mesothelial cell line, Met-5A. We demonstrated that patients with MPM had significantly higher serum levels of HMGB1 than the population who had been exposed to asbestos but had not developed MPM. The difference in overall survival between groups with serum HMGB1 levels that were lower and higher than assumed cut-off values was significant.ConclusionsOur data suggest that serum HMGB1 concentration is a useful prognostic factor for MPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.