Wave intensity (WI) is a new hemodynamic index that provides information about the dynamic behavior of the heart and the vascular system and their interaction. Carotid arterial wave intensity in normal subjects has two positive peaks. The first peak, W(1), occurs during early systole, the magnitude of which increases with increases in cardiac contractility. The second peak, W(2), which occurs towards the end of ejection, is related to the ability of the left ventricle to actively stop aortic blood flow. Between the two positive peaks, a negative area, NA, is often observed, which signifies reflections from the cerebral circulation. The time interval between the R-wave of ECG and the first peak (R - W(1)) corresponds to the pre-ejection period, and that between the first and second peaks (W(1) - W(2)) corresponds to ejection time. We developed a new ultrasonic on-line system for obtaining WI and arterial stiffness (beta). The purpose of this study was (1) to report normal values of various indices derived from WI and beta measured with this system, and (2) to evaluate the intraobserver and interobserver reproducibility of the measurements. The measurement system is composed of a computer, a WI unit, and an ultrasonic machine. The WI unit gives the instantaneous change in diameter of the artery and the instantaneous mean blood velocity through the sampling gate. Using these parameters and blood pressure measured with a cuff-type manometer, the computer gives WI and beta. We applied this method to the carotid artery in 135 normal subjects. The mean values of W(1), W(2), NA, R - W(1), and W(1) - W(2) were 8 940 +/- 3 790 mmHg m/s(3), 1 840 +/- 880 mmHg m/s(3), 27 +/- 13 mmHg m/s(2), 104 +/- 14 ms, and 270 +/- 19 ms, respectively. These values did not show a significant correlation with age. The mean value of beta was 10.4 +/- 4.8 and the values significantly correlated with age (men: r = 0.66, P < 0.0001; women: r= 0.81, P < 0.0001). The reproducibility was evaluated by intraobserver intrasession (IA), intraobserver intersession (IE), and interobserver intrasession variability (IO). The reproducibility of R - W(1) and W(1) - W(2) was high: the mean coefficient of variation (mCV) of IA was less than 3%; 95% confidence limits from the mean values (CL) were less than 8% for IE and less than 4% for IO. The reproducibility of W(1) and beta was good: mCV for IA was less than 10%; CL for IE and IO were less than 17%. W(2) and NA showed a higher variability than other indices: mCV for IA was less than 13%, and CL for IE and IO were less than 36%. However, two sessions by the same observer and two sessions by different observers were not biased. Wave intensity measurements with this system are clinically acceptable.
Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.
We have identified a decrease in reactive persulfide and polysulfide species in the lungs of patients with COPD. These data suggest that the newly detected antioxidants reactive persulfides and polysulfides could be associated with the redox balance in the lungs of patients with COPD.
Wave intensity (WI) is a new hemodynamic index, which is defined as (dP/dt)(dU/dt) at any site of the circulation, where dP/dt and dU/dt are the time derivatives of blood pressure and velocity, respectively. Arterial WI in normal subjects has two positive sharp peaks. The first peak occurs during early systole when a forward-traveling compression wave is generated by the left ventricle. The magnitude of this peak increases markedly with an increase in cardiac contractility. The second peak, which occurs towards the end of systole, is caused by generation of a forward-traveling expansion wave by the ability of the left ventricle to actively stop aortic blood flow. The interval between the R wave of the ECG and the first peak of WI (R-1st peak interval) and the interval between the first and second peaks (1st-2nd interval) are approximately equal to the preejection period and left ventricular ejection time, respectively. Using a combined Doppler and echo-tracking system, we obtained carotid arterial WI noninvasively. We examined the characteristics of WI in 11 patients with mitral regurgitation (MR) before and after surgery, and 24 normal volunteers. In the MR group before surgery, the second peak was decreased and the (1st-2nd interval)/(R-R interval) ratio was reduced, compared with the normal group (140 +/- 130 vs 750 +/- 290mmHg m/s3. P < 0.0083; 20.7% +/- 3.4% vs 26.7% +/- 2.8%, P < 0.083). There were no significant differences in the first peak between the normal group and the MR group before and after surgery. The second peak in the MR group was increased significantly (P < 0.016 vs before surgery) to 1,150 +/- 830mmHg m/s3 in the early period after surgery (stage I), and to 1,090 +/- 580mmHgm/s3 in the late period after surgery (stage II). These values did not differ significantly from that of the normal group. At stage I, the (R-1st peak interval)/ (R-R interval) ratio was increased from 13.4% +/- 2.7% to 20.6% +/- 5.6% (P < 0.016 vs before surgery). At stage II, this ratio decreased to 16.2% +/- 2.8% (P < 0.016 vs stage I). but was still significantly higher than that before surgery. The (1st-2nd interval)/(R-R interval) ratio increased significantly after surgery (P < 0.016 vs before surgery) to values (27.0% +/- 4.5% at stage I and 28.9% +/- 2.6% at stage II) which did not differ significantly from that of the normal group. The recovery of the second peak after surgery suggests that the left ventricle had recovered the ability to actively stop aortic blood flow. Wave intensity is useful for analyzing changes in the working condition of the heart.
The decrease in GDF11 may be involved in the cellular senescence observed in COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.