Ionic liquid (IL)-based drug delivery systems have attracted considerable interest owing to their intrinsic tunability and ability to transport small or large molecules through the skin. However, the development of "green" ILs remains challenging. Herein, eight potentially "green" fatty acid-based amino acid ILs (FAAAE-ILs) were synthesized, and their potency in transdermal drug delivery was investigated using ibuprofen and a peptide drug. The synthesized ILs were characterized to evaluate their physicochemical, thermal, and biological (cytotoxicity) properties. The in vitro skin permeability of the synthesized FAAAE-ILs was evaluated through pig skin. All of the FAAAE-ILs are liquid at room temperature and freely miscible with pharmaceuticals-permitted solvents/agents (e.g., isopropyl myristate (IPM), Span-20, and DMSO). In vitro cytotoxicity study showed that the cell viability of all FAAAE-ILs (10% in IPM) was at least 10 times lower than that for a conventional chemical permeation enhancer (CPE), sodium lauryl sulfate. FAAAE-ILs facilitated excellent ibuprofen solubility through multiple hydrogen bonding interactions between the drug and the ILs. An in vitro permeation study showed that the FAAAE-ILs were more effective in enhancing the permeability of drug molecules than the conventional CPE transcutol. The linoleate-based ILs showed a higher degree of permeation than the oleatebased ILs. Among the linoleate-based ILs and ibuprofen formulations (drug in 10% IL in IPM), the L-proline ethyl ester linoleate ([L-ProEt][Lin])-based formulation exhibited best results, followed by β-alanine ethyl ester linoleate, D-proline ethyl ester linoleate, and L-leucine ethyl ester linoleate after 48 h. Interestingly, the same FAAAE-IL ([L-ProEt][Lin])-containing formulation showed significant enhancement of peptide penetration across pig skin compared with CPE-containing formulations (10% in IPM). The results demonstrate that the FAAAE-IL is a promising green alternative to conventional CPEs for the transdermal delivery of small and large therapeutic molecules.
The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco’s phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
Organic charge transfer cocrystals are inexpensive, modular, and solution-processable materials that are able, in some instances, to exhibit properties such as optical nonlinearity, (semi)conductivity, ferroelectricity, and magnetism. Although the properties of these cocrystals have been investigated for decades, the principal challenge that researchers face currently is to devise an efficient approach which allows for the growth of high-quality crystalline materials, in anticipation of a host of different technological applications. The research reported here introduces an innovative design, termed LASO-lock-arm supramolecular ordering-in the form of a modular approach for the development of responsive organic cocrystals. The strategy relies on the use of aromatic electronic donor and acceptor building blocks, carrying complementary rigid and flexible arms, capable of forming hydrogen bonds to amplify the cocrystallization processes. The cooperativity of charge transfer and hydrogen-bonding interactions between the building blocks leads to binary cocrystals that have alternating donors and acceptors extending in one and two dimensions sustained by an intricate network of hydrogen bonds. A variety of air-stable, mechanically robust, centimeter-long, organic charge transfer cocrystals have been grown by liquid-liquid diffusion under ambient conditions inside 72 h. These cocrystals are of considerable interest because of their remarkable size and stability and the promise they hold when it comes to fabricating the next generation of innovative electronic and photonic devices.
Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.