The effect of particle size on the asymmetric catalytic properties of supported ligand-functionalized nanoparticles (NPs) was investigated for the first time and found to alter significantly the activity but surprisingly not the stereoselectivity. These results suggest that the stereoselectivity of these complex systems is primarily determined by the ligand-reactant interaction, whereas the activity is determined by the particle size.
Mycenarubin C, a previously unknown red pyrroloquinoline alkaloid, was isolated from fruiting bodies of the mushroom Mycena rosea and its structure was elucidated mainly by NMR spectroscopy and mass spectrometry. Unlike mycenarubin A, the major pyrroloquinoline alkaloid in fruiting bodies of M. rosea, mycenarubin C, contains an eight‐membered ring with an additional C1 unit that is hitherto unprecedented for pyrroloquinoline alkaloids known in nature. Incubation of mycenarubin A with an excess of formaldehyde revealed that mycenarubin C was generated nearly quantitatively from mycenarubin A. An investigation into the formaldehyde content of fresh fruiting bodies of M. rosea showed the presence of considerable amounts of formaldehyde, with values of 5 μg per gram of fresh weight in fresh fruiting bodies. Although mycenarubin C did not show bioactivity against selected bacteria and fungi, formaldehyde inhibits the growth of the mycoparasite Spinellus fusiger at concentrations present in fruiting bodies of M. rosea. Therefore, formaldehyde might play an ecological role in the chemical defence of M. rosea against S. fusiger. In turn, S. fusiger produces gallic acid—presumably to detoxify formaldehyde by reaction of this aldehyde with amino acids and gallic acid to Mannich adducts.
Chemical defence and counter‐defence: In warm weather, production of the defence agent formaldehyde protects the mushroom Mycena rosea against infestation with the mycoparasitic fungus Spinellus fusiger. In contrast, in cool and wet weather, which is favourable for the growth of S. fusiger, the mycoparasite is able to inactivate the chemical defence of M. rosea by producing large amounts of gallic acid, which reacts with amino acids and toxic formaldehyde to form nontoxic Mannich adducts, thus enabling S. fusiger to invade the fruiting bodies of M. rosea. More information can be found in the full paper by P. Spiteller et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.