Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.
Several people have supported and helped me to during my PhD with guidance and advice, with contributions to the here presented work, but also with their friendship. First, I would like to thank my supervisor Ana for guiding me though my PhD and helping me manage three interesting but also challenging projects with ups and downs along the way. Thank you for lots of great advice and for helping me stay positive in difficult times.Many thanks to Uwe and Robert for our annual committee meetings, your time and advice, and my PhD committee for taking the time to review this thesis.I would like to thank Sasha (Alexander) for working with me on what sometimes seemed to be endless GAM optimisations, and for advice in all possible and impossible challenges that the wet lab provides. Many thanks go to all bioinformaticians that worked with me during my PhD; Ibai, Sasha (again), Ehsan, Christoph, Dominik, Tom, Rob, Mariano, and Markus. All of you are indispensable to making these projects a success, and you did not only do an amazing job but also managed to teach me a basic understanding of data analysis. Many thanks to Rob for all his prior work on GAM and for teaching me GAM when I joined the lab. Thank you, Enric, for joining our lab for the task of setting up an in-house WGA, your initiative and your work made this possible. Special thanks go to Gesa for helping me out when collecting nuclear profiles got too much for just one person, and for being a great friend. Without you the lab would have been only half the fun. I would also like to thank Izabela for her contribution to our final optimisations, which gave me a lot of positive energy when I really needed it, and everyone else in the Pombo lab for their help and/or friendship;
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1–3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4–6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.
Summary (Abstract)Technologies for measuring 3D genome topology are increasingly important for studying mechanisms of gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of Genome Architecture Mapping (GAM), a ligation-free technique to map chromatin contacts genomewide. We perform a detailed comparison of contacts obtained by multiplex-GAM and Hi-C using mouse embryonic stem (mES) cells. We find that both methods detect similar topologically associating domains (TADs). However, when examining the strongest contacts detected by either method, we find that only one third of these are shared. The strongest contacts specifically found in GAM often involve “active” regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain “inactive” regions. Our work shows that active genomic regions are involved in extensive complex contacts that currently go under-estimated in genome-wide ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.