Glutamate transporters are involved in neural differentiation, neuronal survival, and synaptic transmission. In the present study, we examined glutamate transporter 1 (GLT1) expression in the neonatal somatosensory cortex of C57BL/6 mice, and pursued its role in somatosensory development by comparing barrel development between GLT1 knock-out and control mice. During the first few neonatal days, a critical period for barrels, GLT1 expression is strikingly upregulated in cortical astrocytes, whereas it was downregulated in neuronal elements to below the detection threshold. GLT1 knock-out neonates developed normally in terms of body growth, cortical histoarchitecture, barrel formation, and critical period termination. However, when row C whiskers were lesioned during the critical period, reduction of lesioned row C barrels and reciprocal expansion of intact row B/D barrels were both milder in GLT1 knock-out mice than in control littermates. Accordingly, the map plasticity index, calculated as (B ϩ D)/2C, was significantly lowered in GLT1 knock-out mice. We also found that extracellular glutamate levels in the neonatal somatosensory cortex were significantly elevated in GLT1 knockout mice. Diminished lesion-induced plasticity was further found in mutant mice lacking glutamate-aspartate transporter (GLAST), an astrocyte-specific glutamate transporter throughout development. Therefore, glutamate transporters regulate critical period plasticity by enhancing expansion of active barrels and shrinkage of inactive barrels. Because cortical contents of glutamate receptors and GLAST were unaltered in GLT1 knock-out mice, this action appears to be mediated, at least partly, by keeping the ambient glutamate level low. Considering an essential role of glutamate receptors in the formation of whisker-related thalamocortical synapse patterning, glutamate transporters thus facilitate their activity-dependent remodeling.
The human brain has important abilities for manipulating phonemes, the basic building blocks of speech; these abilities represent phonological processing. Previous studies have shown change in the activation levels of broad cortical areas such as the premotor cortex, the inferior frontal gyrus, and the superior temporal gyrus during phonological processing. However, whether these areas actually convey signals to representations related to individual phonemes remains unclear. This study focused on single vowels and investigated cortical areas important for representing single vowels using electrocorticography (ECoG) during covert articulation. To identify such cortical areas, we used a neural decoding approach in which machine learning models identify vowels. A decoding model was trained on the ECoG signals from individual electrodes placed on the subjects' cortices. We then statistically evaluated whether each decoding model showed accurate identification of vowels, and we found cortical areas such as the premotor cortex and the superior temporal gyrus. These cortical areas were consistent with previous findings. On the other hand, no electrodes over Broca's area showed significant decoding accuracies. This was inconsistent with findings from a previous study showing that vowels within the phonemic sequence of words can be decoded using ECoG signals from Broca's area. Our results therefore suggest that Broca's area is involved in the processing of vowels within phonemic sequences, but not in the processing of single vowels.
Development of correct topographical connections between peripheral receptors and central somatosensory stations requires activitydependent synapse refinement, in which the NMDA type of glutamate receptors plays a key role. Here we compared functional roles of GluN2B (GluR2 or NR2B) and GluN2D (GluR4 or NR2D), two major regulatory subunits of neonatal NMDA receptors, in development of whisker-related patterning at trigeminal relay stations. Compared with control littermates, both the appearance of whisker-related patterning and the termination of the critical period, as assessed by unilateral infraorbital nerve transection, were delayed by nearly a day in the somatosensory cortex of GluN2B ϩ/Ϫ mice but advanced by nearly a day in GluN2D Ϫ/Ϫ mice. Similar temporal shifts were found at subcortical relay stations in the thalamus and brainstem of GluN2B ϩ/Ϫ and GluN2D Ϫ/Ϫ mice. In comparison, the magnitude of lesion-induced critical period plasticity in the somatosensory cortex, as assessed following row-C whisker removal, was normal in both mutants. Thus, GluN2B and GluN2D play counteractive roles in temporal development and maturation of somatosensory maps without affecting the magnitude of critical period plasticity. To understand the opposing action, we then examined neuronal and synaptic expressions of the two subunits along the trigeminal pathway. At each trigeminal station, GluN2B was predominant at asymmetrical synapses of non-GABAergic neurons, whereas GluN2D was selective to asymmetrical synapses of GABAergic neurons. Together, our findings suggest that GluN2B expressed at glutamatergic synapses on glutamatergic projection neurons facilitates refinement of ascending pathway synapses directly, whereas GluN2D expressed at glutamatergic synapses on GABAergic interneurons delays it indirectly.
Although the ability to make optimal decisions under uncertainty is an integral part of everyday life, individuals with autism spectrum disorder (ASD) frequently report that they experience difficulties with this skill. In behavioral economics, researchers distinguish two types of uncertainty to understand decision-making in this setting: risk (known probabilities) and ambiguity (unknown probabilities). However, it remains unclear how individuals with ASD behave under risk and ambiguity, despite growing evidence of their altered decision-making under uncertainty. We therefore extended previous research by studying the attitudes of those with ASD toward risk and ambiguity in both positive and negative contexts (i.e., gain and loss). In gain contexts, no significant difference was observed between the groups in risk attitudes, but ambiguity aversion was attenuated in ASD. In loss contexts, ambiguity attitudes did not significantly differ between the groups, but the ASD participants were less risk-seeking compared with the controls. In addition, insensitivity to the context change under risk and ambiguity in ASD was both significantly associated with poor social skills. These results improve our understanding of altered decision-making under uncertainty by disentangling the attitudes toward risk and ambiguity in ASD individuals. Applying behavioral economic tools may provide insights into the mechanisms underlying behavioral disturbances in ASD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13229-017-0162-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.