The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2',3'-cyclic phosphate and 5'-hydroxyl termini. The active site nucleotide C75 has a pK(a) shifted >2 pH units toward neutrality and has been implicated as a general acid/base in the cleavage reaction. An active site Mg(2+) ion that helps activate the 2'-hydroxyl for nucleophilic attack has been characterized biochemically; however, this ion has not been visualized in any previous structures. To create a snapshot of the ribozyme in a state poised for catalysis, we have crystallized and determined the structure of the HDV ribozyme bound to an inhibitor RNA containing a deoxynucleotide at the cleavage site. This structure includes the wild-type C75 nucleotide and Mg(2+) ions, both of which are required for maximal ribozyme activity. This structure suggests that the position of C75 does not change during the cleavage reaction. A partially hydrated Mg(2+) ion is also found within the active site where it interacts with a newly resolved G.U reverse wobble. Although the inhibitor exhibits crystallographic disorder, we modeled the ribozyme-substrate complex using the conformation of the inhibitor strand observed in the hammerhead ribozyme. This model suggests that the pro-R(P) oxygen of the scissile phosphate and the 2'-hydroxyl nucleophile are inner-sphere ligands to the active site Mg(2+) ion. Thus, the HDV ribozyme may use a combination of metal ion Lewis acid and nucleobase general acid strategies to effect RNA cleavage.
The hepatitis delta virus (HDV) ribozyme uses a cytosine to facilitate general acid-base catalysis. Biochemical studies suggest that C75 has a pKa perturbed to near neutrality. To measure this pKa directly, Raman spectra were recorded on single ribozyme crystals using a Raman microscope. A spectral feature arising from a single neutral cytosine was identified at 1528 cm(-1). At low pH, this mode was replaced with a new spectral feature. Monitoring these features as a function of pH revealed pKa values for the cytosine that couple anticooperatively with Mg2+ binding, with values of 6.15 and 6.40 in the presence of 20 and 2 mM Mg2+, respectively. These pKa values agree well with those obtained from ribozyme activity experiments in solution. To correlate the observed pKa with a specific nucleotide, crystals of C75U, which is catalytically inactive, were examined. The Raman difference spectra show that this mutation does not affect the conformation of the ribozyme. However, crystals of C75U did not produce a signal from a protonatable cytosine, providing strong evidence that protonation of C75 is being monitored in the wild-type ribozyme. These studies provide the first direct physical measurement of a pKa near neutrality for a catalytic residue in a ribozyme and show that ribozymes, like their protein enzyme counterparts, can optimize the pKa of their side chains for proton transfer.
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.
A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.