Protective coatings can prolong the lifespan of engineering components. Electroless Ni-P coating is a very hard coating with high corrosion resistance, but low toughness. The addition of NiTi nanoparticles into the coating has shown the potential to increase the toughness of electroless Ni-P and could expand its usability as a protective coating for more applications. However, the study of the tribological behaviour and wear mechanisms of Ni-P-NiTi composite coating has been minimal. Furthermore, there is no studies on the effect of coating thickness on monolithic and composite electroless Ni-P coating wear behaviour. The wear rates of each coating were found by measuring the volume loss form multi-pass wear tests. The wear tracks were examine using a confocal microscope to observe the wear mechanisms. Each sample was tested using a spherical indenter and sharp indenter. It was found that the NiTi nanoparticle addition displayed toughening mechanisms and did improve the coating’s wear resistance. The 9 μm thick Ni-P-NiTi coating had less cracking and more uniform wear than the 9 μm thick Ni-P coating. For both the monolithic and composite coatings, their thicker version had higher wear resistance than their thinner counterpart. This was explained by the often observed trend in coatings where it has higher tensile stress near the substrate interface, which decreases and becomes compressive as thickness increases. Overall, the 9 μm thick Ni-P-NiTi coating had the highest wear resistance out of all the coatings tested.
The lifespan of low-carbon steel petroleum pipelines can often be shortened by the erosion–corrosion damage caused by their service conditions. Applying electroless Ni-P coating is a promising option to protect the steel from the environment due to its high hardness and corrosion resistance. However, electroless Ni-P has a low toughness but can be increased by the addition of NiTi ductile particles. This work produced electroless Ni-P and Ni-P-NiTi coatings of different thicknesses on AISI 1018 substrates and compared their erosion, corrosion, and erosion–corrosion behaviors. The methodology involved conducting slurry pot erosion–corrosion tests on AISI 1018 steel substrate, the monolithic Ni-P coatings, and the composite Ni-P-NiTi coatings. Erosion resistance was highly influenced by coating thickness, presumably because of the relationship between the erosion-induced compressive stresses and the coating’s as-plated internal stresses. The NiTi nanoparticle addition was highly effective at improving the erosion–corrosion resistance of the coating. Pitting corrosion and cracking were present after erosion–corrosion on the monolithic Ni-P coatings. However, the Ni-P-NiTi composite coating had a relatively uniform material loss. Overall, the AISI 1018 steel substrate had the worst erosion–corrosion resistance and 25 μm thick Ni-P-NiTi coating had the best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.