Locusts are grasshoppers (Orthoptera: Acrididae) that are characterised by their capacity for extreme population density-dependent polyphenism, transforming between a cryptic solitarious phase that avoids other locusts, and a swarming gregarious phase that aggregates and undergoes collective migration. The two phases differ in many aspects of behaviour, physiology and ecology, making locusts a useful model through which to investigate the phenotypic interface of molecular processes and environmental cues. This review summarises recent progress in understanding the mechanisms and consequences of locust phase change, from differential gene expression and epigenetic regulation through to neuronal plasticity and altered behaviour. The impact of techniques such as RNA interference (RNAi), and the sequencing of the first locust genome is discussed, and we consider the evidence from comparative analyses between related locust species for the possible evolution of locust-like phenotypic plasticity. Collective movement, and new ways of measuring the behaviour of both migrating bands in the field and individuals in the laboratory, are analysed. We also examine the environmental factors that affect phase change, along with the wider impact of land use and management strategies that may unwittingly create environments conducive to outbreaks. Finally, we consider the human costs of locust swarming behaviour, and use combined social, economic and environmental approaches to suggest potential ways forward for locust monitoring and management.
BackgroundCulicoides spp. biting midges transmit bluetongue virus (BTV), the aetiological agent of bluetongue (BT), an economically important disease of ruminants. In southern India, hyperendemic outbreaks of BT exert high cost to subsistence farmers in the region, impacting on sheep production. Effective Culicoides spp. monitoring methods coupled with accurate species identification can accelerate responses for minimising BT outbreaks. Here, we assessed the utility of sampling methods and DNA barcoding for detection and identification of Culicoides spp. in southern India, in order to provide an informed basis for future monitoring of their populations in the region.MethodsCulicoides spp. collected from Tamil Nadu and Karnataka were used to construct a framework for future morphological identification in surveillance, based on sequence comparison of the DNA barcode region of the mitochondrial cytochrome c oxidase I (COI) gene and achieving quality standards defined by the Barcode of Life initiative. Pairwise catches of Culicoides spp. were compared in diversity and abundance between green (570 nm) and ultraviolet (UV) (390 nm) light emitting diode (LED) suction traps at a single site in Chennai, Tamil Nadu over 20 nights of sampling in November 2013.ResultsDNA barcode sequences of Culicoides spp. were mostly congruent both with existing DNA barcode data from other countries and with morphological identification of major vector species. However, sequence differences symptomatic of cryptic species diversity were present in some groups which require further investigation. While the diversity of species collected by the UV LED Center for Disease Control (CDC) trap did not significantly vary from that collected by the green LED CDC trap, the UV CDC significantly outperformed the green LED CDC trap with regard to the number of Culicoides individuals collected.ConclusionsMorphological identification of the majority of potential vector species of Culicoides spp. samples within southern India appears relatively robust; however, potential cryptic species diversity was present in some groups requiring further investigation. The UV LED CDC trap is recommended for surveillance of Culicoides in southern India.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1722-z) contains supplementary material, which is available to authorized users.
We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.
BackgroundBluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), a clinical disease observed primarily in sheep. BT has a detrimental effect on subsistence farmers in India, where hyperendemic outbreaks impact on smallholdings in the southern states of the country. In this study, we establish a reliable method for testing the toxic effects of deltamethrin on Culicoides and then compare deltamethrin with traditional control methods used by farmers in India.ResultsEffects of deltamethrin were initially tested using a colonised strain of Culicoides nubeculosus Meigen and a modified World Health Organisation exposure assay. This method was then applied to field populations of Culicoides spp. in India. The field population of C. oxystoma in India had a greater LC50 (0.012 ± 0.009%) for deltamethrin than laboratory-reared C.nubeculosus (0.0013 ± 0.0002%). Exposure of C. nubeculosus to deltamethrin at higher ambient temperatures resulted in greater rates of knockdown but a lower mortality rate at 24 h post-exposure. Behavioural assays with C. nubeculosus in WHO tubes provided evidence for contact irritancy and spatial repellence caused by deltamethrin. The field experiments in India, however, provided no evidence for repellent or toxic effects of deltamethrin. Traditional methods such as the application of neem oil and burning of neem leaves also provided no protection.ConclusionsOur study demonstrates that field-collected Culicoides in India are less susceptible to deltamethrin exposure than laboratory-bred C. nubeculosus and traditional methods of insect control do not provide protection to sheep. These low levels of susceptibility to deltamethrin have not been recorded before in field populations of Culicoides and suggest resistance to synthetic pyrethrioids. Alternative insect control methods, in addition to vaccination, may be needed to protect Indian livestock from BTV transmission.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-1992-0) contains supplementary material, which is available to authorized users.
Phylogeographical research has revealed several paradigm patterns of postglacial range expansion from the Mediterranean peninsulas to more northern parts of Europe. These range expansions have consequences for the genetic constitution of populations. Although many studies have been performed in mainland Europe, the colonization history of the British Isles is relatively poorly studied; the genetic consequences of the last glacial readvances and the climate optimum conditions, as well as the implications of the recent climatic conditions on the population genetic structures, are little understood. Therefore, we selected the common blue butterfly Polyommatus icarus as a model species for understanding more generally the colonization patterns of the British Isles and the genetic dynamics on these islands. Allozyme analyses of this butterfly show a rather high genetic diversity over continental Europe without major genetic differentiation. The situation on the British Isles is completely different. Here, populations show a much lower genetic diversity compared to mainland Europe. The genetic constitution is well differentiated from that observed on the European mainland, and the genetic differentiation among populations in Britain is stronger than at the European scale. These results support the hypothesis that a relatively cold-tolerant species such as the common blue could have colonized the British Isles early during the late glacial period and survived the last glacial readvances in small refugia in the South. The retraction of this species in small isolated populations could have caused the genetic impoverishment found. The subsequent forest climax during the climate optimum possibly restricted further expansion of this early succession species to small pockets all over the British Isles, resulting in the genetic patchwork that is still observed. Additionally, the relatively cool and rainy conditions one these islands might have caused bottlenecks, possibly enforcing these genetic patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.