In this study, tragacanth gum/chitosan/ZnO nanoprism-based electrochemical sensors were prepared for sensing reactive dyes in water. To use an electrochemical sensor, a ~250 nm-sized ZnO nanoprism was synthesized via ultrasonic-assisted green synthesis method, using tragacanth gum and chitosan polymer blend as a matrix. The electrochemical properties of tragacanth gum/chitosan/ZnO nanoprisms were compared against reactive red 35, reactive yellow 15, and reactive black 194. The electrochemical measurement results indicated that prepared tragacanth gum/chitosan/ZnO nanoprism-based electrochemical sensor detected 25 ppm reactive red 35 in 1 min at room temperature. This study reveals new high-potential novel tragacanth gum/chitosan/ZnO nanoprism-based sensing material for the detection of reactive red dye-consisted wastewater with high sensitivity and short response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.