Rationale:
Pyroptosis is a morphologically and mechanistically distinct form of cell death and is characterized by gasdermin D (GSDMD) or gasdermin E (GSDME)-mediated necrosis with excessive inflammatory factor release. Cardiomyocyte necrosis and inflammation play key roles in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. However, whether cardiomyocytes undergo pyroptosis and the underlying mechanism in myocardial I/R injury remain unclear.
Objective:
We aimed to investigate the role of pyroptosis in myocardial I/R injury.
Methods and Results:
In vivo and in vitro experiments were used to investigate pyroptosis of cardiomyocyte and the associated mechanisms during I/R injury. Wild-type (WT), Myh6-Cre and cardiomyocyte-specific GSDMD-deficient (GSDMD-CKO) male mice were subjected to I/R. Human peripheral blood samples were collected from STEMI (acute ST-segment-elevation myocardial infarction) patients or control patients at 0, 1 and 24 h after PCI (percutaneous coronary intervention) in our department. The serum levels of GSDMD were measured by ELISA. H/R (hypoxia/reoxygenation) induced cardiomyocyte pyroptosis and the release of mature IL-18 but not IL-1β, which mechanistically resulted from GSDMD cleavage by caspase-11 in cardiomyocytes. Furthermore, GSDMD gene deletion blocked H/R-induced cardiomyocyte pyroptosis and IL-18 release. GSDMD and its pyroptosis-inducing N-terminal fragment (GSDMD-N) were upregulated in myocardial tissues after I/R injury. Immunofluorescence analysis showed that GSDMD was mainly localized in cardiomyocytes. GSDMD deficiency in cardiomyocytes significantly reduced the I/R-induced myocardial infarct size. Moreover, increased GSDMD serum levels were detected in patients exhibiting I/R injury 1 h after PCI for STEMI.
Conclusions:
Our results show that GSDMD-mediated cardiomyocyte pyroptosis is a key event during myocardial I/R injury and that the caspase-11/GSDMD pathway may be essential to this process. Additionally, GSDMD inhibition significantly reduces cardiomyocyte pyroptosis and I/R-induced myocardial injury.
The role of M1 macrophages (M1M)-derived exosomes in the progression of neointimal hyperplasia remains unclear now. Using a transwell co-culture system, we demonstrated that M1M contributed to functional change of vascular smooth muscle cell (VSMC). We further stimulated VSMCs with exosomes isolated from M1M. Our results demonstrated that these exosomes could be taken up by VSMCs through macropinocytosis. Using a microRNA array assay, we identified that miR-222 originated from M1M-derived exosomes triggered the functional changes of VSMCs. In addition, we confirmed that miR-222 played a key role in promoting VSMCs proliferation and migration by targeting Cyclin Dependent Kinase Inhibitor 1B (CDKN1B) and Cyclin Dependent Kinase Inhibitor 1C (CDKN1C) in vitro. In vivo, M1M-derived exosomes significantly aggravated neointima formation following carotid artery ligation injury and wire injury and these effects were partly abolished by miR-222 inhibitor 2′OMe-miR-222. Our findings thus suggest that exosomes derived from M1M could aggravate neointimal hyperplasia through delivering miR-222 into VSMCs. Future studies are warranted to validate if the post-injury vascular neointimal hyperplasia and restenosis could be attenuated by inhibiting miR-222.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.