Worldwide, calcific aortic valve disease is one of the leading causes of morbidity and mortality among patients with cardiac abnormalities. Aortic valve mineralization and calcification are the key events of adult calcific aortic valve disease manifestation and functional insufficiency. Due to heavy mineralization and calcification, adult aortic valvular cusps show disorganized and dispersed stratification concomitant with deposition of calcific nodules with severely compromised adult valve function. Interestingly, shared gene regulatory pathways are identified between bone-forming cells and heart valve cells during development. Asporin, a small leucine-rich proteoglycan (43 kDa), acts to inhibit mineralization in periodontal ligament cells and is also detected in normal murine adult aortic valve leaflets with unknown function. Therefore, to understand the Asporin function in aortic cusp mineralization and calcification, adult avian aortic valvular interstitial cell culture system is established and osteogenesis has been induced in these cells successfully. Upon induction of osteogenesis, reduced expression of Asporin mRNA and increased expression of bone and osteogenesis markers are detected compared to cells maintained without osteogenic induction. Importantly, treatment with human recombinant Asporin protein reduces the mineralization level in osteogenic media-induced aortic valvular interstitial cells with the concomitant decreased level of Wnt/β-catenin signaling. Overall, all these data are highly indicative that Asporin might be a novel biomolecular target to treat patients of calcific aortic valve disease over current cusp replacement surgery.
Pathological cardiac remodeling as an aftermath of a severe cardiac injury can lead to ventricular dysfunction and subsequent heart failure. Adamts4, a metalloproteinase, and disintegrin with thrombospondin-like motif, involved in the turnover of certain extracellular matrix molecules and pathogenesis of osteoarthritis, also plays a role in cardiac remodeling although little is presently known about its expression and function in the heart. Here, we have investigated the dynamic expression pattern of Adamts4 during cardiogenesis and also in the adult heart. To our surprise, adult cardiac injury reactivated Adamts4 expression concomitant with fibrosis induction. To better understand the mechanism, cultured H9c2 cardiomyocyte cells were subjected to ROS injury and Hypoxia. Moreover, through combinatorial treatment with SB431542 (an inhibitor of Tgf-β1), and Adamts4 siRNA mediated gene knockdown, we were able to decipher a regulatory hierarchy to the signal cascade being at the heart of Tgf-β regulation. Besides the hallmark expression of Adamts4 and Tgf-β1, expression of other fibrosis-related markers like Collagen-III, alpha-SMA and Periostin were also assessed. Finally, increased levels of Adamts4 and alpha-SMA proteins in cardiac patients also resonated well with our animal and cell culture studies. Overall, in this study, we highlight, Adamts4 as a novel biomarker of adult cardiac injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.